Heavy metals residues and trace elements in milk powder marketed in Dakahlia Governorate

*Salah, F. A. A. E., Esmat, I. A. and Mohamed, A. B.

Food Control Department, Faculty of Veterinary Medicine Zagazig University-Egypt

Abstract

Fifty random milk powder samples were collected from different outlets in Dakahlia Governorate, Egypt and analyzed by Atomic Absorption Spectrophotometer to determine heavy metals residues and trace elements [lead (Pb), Cadmium (Cd), aluminium (Al), iron (Fe), selenium (Se) and manganese (Mn)]. The average concentration of Pb, Cd, Al, Fe, Mn and Se in examined milk powder samples were 0.791; 0.322; 1.57; 20.41; 0.497 and 0.014 ppm, respectively. All examined samples of milk powder had Pb, Cd, Fe, and Mn residues over the permissible limit. At the meanwhile, 96 and 58% of examined samples had Al and Se levels above the permissible limit, respectively. The calculated daily intake of Pb, Cd, Al, Fe, Mn and Se from consumption of 200 ml reconstituted milk powder per day were 158.5; 64.4; 313.4; 4082; 99.4 and 2.8 µg, respectively, which contributed about 31.64; 92.0; 26.12; 85.04; 1.99 and 3.5% from the Acceptable Daily intake of these elements, respectively. Public health significance and hazardous of these metals were discussed.

Introduction

Wide varieties and range of concentrations of metals are distributed everywhere in nature. While in human body, most of metals have come through food. However, not all consumed metals are retained, some pass straightly through and lost in feces and some are firstly absorbed and then lost in sweat, urine, bile excretion and in discarded hair and skin.

Heavy metals are persistent as contaminants in the environment and come to the fore front of dangerous substances causing health hazards in human. Pb, Cd and Al are among the most important of these elements. Industrial and agricultural processes have resulted in an increased concentration of heavy metals in air, water, soil and subsequently, these metals are taken by plants or animals and find their ways into food chain (Ahmad, 2002). The presence of heavy metals in dairy products may be attributed to contamination of the original cow’s milk, which may be due to exposure of lactating cow to environmental pollution or consumption of feeding stuffs and water (Carl, 1991; Okada et al., 1997). Moreover, raw milk may be exposed to contamination during its manufacture (Ukhun et al., 1990; El-Batanouni and Abo El-Ata, 1996).

Among the metals found in the human body, only a small number are believed to be essential as Se, Fe and Mn (Lopez-Garcia et al., 2009). Deficiency of any one of essential metal nutrients will result in specific biochemical lesions within cells of the body and subsequently development of certain characteristic clinical symptoms which will normally alleviate when the deficiency is corrected by supplying an adequate amount of the missing element. Although these metals are essential for health, excessive exposure may be hazardous (Protasowicki, 1992; Akhter et al., 2004). This is complicated even further if there is a very narrow range between the concentration at which metal is considered essential and considered toxic (Higharm and Tomkins, 1993).

Milk powder is one of the most popular dairy products due to long shelf life and its employment in the manufacture of many dairy products such as ice cream, cheese, evaporated milk, condensed milk and infant milk formula and also as an ingredient in many bakery products, processed meats and soups. Usually, essential elements are normally added to milk powder during manufacture, in order to meet nutritional requirements (Oskarsson et al., 1995). Hence, it is necessary to control the level of the added elements since their excess may play a role as a potential source of exposure.

While the main quality parameters for milk powder are the microbiological and sensory characteristics, recent investigations have been recommended that the determination of heavy metals and trace elements in milk powder should be included to these parameters. (Karadjova et al., 2000; Martino et al., 2000; Orak et al., 2005). Since, as far to our knowledge, reports regarding heavy and trace metals determination in milk powder in Egypt is scarce,
this work was undertaken to determine their levels in milk powder samples collected from Dakahlia Governorate, Egypt.

Materials and Methods

Collection of samples

50 random milk powder samples, locally packaged in Egypt, were collected from different outlets in Dakahlia Governorate, Egypt in their original package. Collected samples were taken to the laboratory without delay. Each sample was labeled to identify the source, site and date of sampling.

Preparation of samples

0.3 gm of each sample was transferred in clean and acid washed screw capped digestion tubes. Two tubes were prepared from each sample and all digestion tubes were identified for examination.

Analysis of the prepared samples

For determination of Pb, Cd, Fe and Se, the first tube of each prepared sample was digested according to Tsoumbaris and Papadop (1994). While, for determination Al and Mn, the procedure was carried out on the second tube according to Dabeka and Mckenzie (1992). All filtered samples were analyzed for their metal contents according to methods of Medina et al. (1986) by using “perkia-Elmer Atomic Absorption Spectrophotometer model d 2380, USA, 1998” at the micro analytical laboratory, Department of Chemistry, Faculty of Science, Mansoura University, Egypt. Instrumental analysis of Pb, Cd, Fe and Se and were conducted by air lacytene Flame Atomic Absorption Spectrophotometer (FAAS). While for determination of Al and Mn, Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS) was used. The analytical detection limits of Pb, Cd, Fe, Se, Al and Mn for the used instrumentation were 0.02 ppm, 0.0006 ppm, 0.05 mg/kg, 0.002 ppm, 0.02 ppm and 0.01 ppm, respectively.

Calculation of the daily metal intake

The daily metal intake was estimated from the consumption of milk powder and the mean data of the present study were combined with the consumption data obtained from Nutrition Institute, Cairo, A.R.E. (1996). Comparison of the calculated daily metal intake from milk powder with the Acceptable Daily Intake (ADI) values recommended by FAO/WHO (1972, 1974c, 1982, 1987, and 1989), FAO/WHO (1999), Food and Nutrition Board (1980), Dreosti (1986) and Pennington (1987).

<table>
<thead>
<tr>
<th>Metal</th>
<th>No. of examined samples</th>
<th>% of positive samples</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Mean ± S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>50</td>
<td>100.0</td>
<td>0.45</td>
<td>1.85</td>
<td>0.791</td>
<td>0.751±0.057</td>
</tr>
<tr>
<td>Cadmium</td>
<td>50</td>
<td>100.0</td>
<td>0.10</td>
<td>1.45</td>
<td>0.322</td>
<td>0.322±0.019</td>
</tr>
<tr>
<td>Aluminum</td>
<td>50</td>
<td>100.0</td>
<td>0.35</td>
<td>2.63</td>
<td>1.57</td>
<td>1.57±0.084</td>
</tr>
<tr>
<td>Iron</td>
<td>50</td>
<td>100.0</td>
<td>10.35</td>
<td>28.85</td>
<td>20.41</td>
<td>20.41±0.621</td>
</tr>
<tr>
<td>Manganese</td>
<td>50</td>
<td>100.0</td>
<td>0.35</td>
<td>1.05</td>
<td>0.497</td>
<td>0.497±0.030</td>
</tr>
<tr>
<td>Selenium</td>
<td>50</td>
<td>100.0</td>
<td>0.005</td>
<td>0.45</td>
<td>0.20</td>
<td>0.20±0.01</td>
</tr>
</tbody>
</table>

Table 2. Previous related results as compared to results of this study

Statistical analysis

All the data analyzed using SPSS/PCT (Foster, 2001).

Results and Discussion

Analysis of whole milk powder samples indicated their contamination by some heavy metals residues, exhibiting a wide array of hazardous impacts on human health. Beyond certain limits, all metals turned to be toxic to human body. This could be applied to essential minerals like Fe; Mn and Se, as well as non-essential metals and metalloids like Pb and Cd compounds. In relation to many previously reported surveys worldwide, Tables 1 and 2 summarized results obtained in this study and correlated our findings with results of these surveys.

The statistical analysis of obtained data (Table 3) revealed that all examined milk powder samples having Pb, Cd, Fe and Mn levels above the recommended permissible limit. The obtained results lied above the permissible limit recommended by Wenlok et al. (1979), Egyptian Standard (1993) and Egyptian standard (2001). While, 48 (96%) out of 50 examined samples having Al levels above the permissible limit recommended by Pennington (1987). However, 29 (58%) out of 50 examined samples having Se levels above the permissible limit recommended by Thorn et al. (1976).
From the above mentioned results, it is evident that examined milk powder samples were contaminated with variable amounts of heavy metals. Higher values in milk powder may have been arisen from contamination during handling, exposure and processing. The processing steps mainly involve boiling and frying in steel or Aluminium-ware from which such contamination may have results (Onianwa et al., 1996).

The heavy metal contents varies widely due to many factors such as differences between species, characteristics of the manufacturing practices and possible contamination coming from the equipments during the process (Yuzbasi et al., 2003; Caggiano et al., 2005). Oxidation of containers and equipments were affected by some parameters such as pH, quality of raw materials of containers and equipments. Enhancement of oxidation will increase the metal contents of samples. Metal contents of original milk will subsequently affect the metal levels in milk powder.

Increased Pb concentration in milk powder may be attributed to contamination of original cow’s milk used for manufacture of these products (Nasef, 2002). The contamination of original cow’s milk may be due to excessive exposure of lactating cows to environmental Pb from heavy traffic, consumption of contaminated feeding stuffs and water (Okada et al., 1997). Moreover, raw milk may be contaminated from metallic Pb from Pb soldered cans (El-Batanoni and Abo El-Ata, 1996). Pb was mainly associated with caseins in cow’s milk and freezing or heating did not cause significant changes in distribution of Pb in cow’s milk and milk products (Mata et al., 1996) but desiccation process produces significant increases in Pb concentration (Moreno-Rojas et al., 1994).

Milk and dairy products usually contain very low concentration of Cd except when dairy animals consumed contaminated feeds and water (Cabrera et al., 1995; Okada et al., 1997). Moreover, contamination during storage, marketing and leaching from containers may be considered as a source of Cd in milk and other dairy products. The distribution change of Cd after heat treatment of milk due to the formation of complexes between the whey proteins and the metal or to the desegregation of the Cd bound to casein micelles.

Also, the mean levels of Al were higher in examined samples and this may be attributed to migration of this element from packaging materials into the milk products (Poonam et al., 1997). The high levels of Fe in milk powder may be attributed to its fortification with Fe. The Se content of milk depends largely on animals feed and its geographic distribution (Klaassen et al., 1986).

The results recorded in Table (4) indicated that the average concentration of Pb, Cd and Al were 791, 322 and 1567 µg/L, respectively. These concentrations gave a daily intake of about 158.5, 64.4 and 313.4 µg/person, respectively and these quantities representing 85.04, 92.0 and 26.12% of the acceptable daily intake recommended by FAO/WHO (1987) and FAO/WHO (1987). At the same time, the average concentration of Fe, Mn and Se were 20410, 497 and 14 µg/L, respectively. These concentrations supplied a daily intake about 158.5, 64.4 and 313.4 µg/person, respectively and these quantities representing 85.04, 92.0 and 26.12% of the acceptable daily intake recommended by FAO/WHO (1980), Dreosti (1986) and FAO/WHO (1999). From aforementioned results, it could be concluded that the daily intake of Pb, Cd, Al and Fe were relatively high, but for Mn and Se were relatively low.

Regarding the public health hazards of the detected metals, Pb is a potent neurotoxin for...
which no safety threshold has yet been found (US Environmental Protection Agency, 2003). In-vitro exposure to Pb and during infancy irreversibly affects development of the nervous system, causing reduced learning disabilities. Cd has estrogenic properties and causes an increased incidence of cancer in mice (Johnson et al., 2003). Chronic exposure to Cd and Pb is associated with kidney damage in adults (Navas-Acien et al., 2009). Infants, particularly those born prematurely, have reduced renal function and their developing kidneys are more susceptible to damage caused by excessive Cd and Pb in their diet. Al is a potent neurotoxin; and long-term feeding of Al-containing foods to infants caused impaired mental development at 18 months (Committee on Nutrition, 1996; Klein et al., 2004). Also, excessive Al in the blood is selectively incorporated into the bones of infants, resulting in a weakened bone structure (Bernardo et al., 2010). Al can only be removed from blood via the kidneys, and severe renal disorders can result in accumulation of Al in the blood, a situation potentially exacerbated by the action of higher levels of Cd and Pb on the kidneys. Thus, the monitoring of these elements is a high priority, internationally (Ikem et al., 2002; Navarro-Blasco and Alvarez-Galindo, 2003; Ursiniova and Masanova, 2005; US FDA, 2008; Wojciechowska-Mazurek et al., 2008; Winiarska-Mieczan, 2009; Al Khalifa and Ahmad, 2010; Burrell and Exley, 2010).

In this sense, the determination of trace elements (Fe, Mn and Se) in food is of great importance since the deficiency or excess of metals could promote several clinical disorders resulting in public health problems, as respiratory system cancer, skin disorder, anemia, depression of growth, impaired reproductive performance, heart failure and gastrointestinal disturbances, fatigue, decreased immunity and even death (Fraga, 2005; Yebra et al., 2008; Tokalioglu and Gurbuz, 2010).

Conclusion

Investigations revealed that extremely toxic heavy metals (Pb; Cd and Al) were detected above the toxicity levels. It is seemingly necessary to warn about the hazardous effects of these toxic elements on both child and adult. The consumption of such milk powder is considered as additional source of exposure beside the direct sources of air, water and plants. Therefore, a strict regular monitoring of heavy metals contamination of milk and milk products is recommended in order to (i) establish the true contribution of milk and milk products to the dietary intake of heavy metals, (ii) recognize their possible health hazardous effects, their bioaccumulation during chronic exposure and their mobilization and secretion in milk.

References

Pedenagements 97: 413-416.
Atomic Absorption Spectrometric. Determination
and survey of total aluminium, copper, manganese and
in infant formulas and evaporated milks. Journal of
AOAC International 75(6): 954-963.
43: 60-78.
Egyptian Standards, 1993. Maximum levels of heavy
metal contaminants in food. Egyptian Organization
for Standardization and Quality Control.
Organization for Standardization and Quality Control.
ES, 1830.
food. Proceedings of Food Born Contamination and
Egyptian’s Health Conference, p. 11-25. Mansoura,
Egypt.
Trace element determination in different milk slurries.
significance in milk and milk products in Assiut
Governorate. Assiut, Egypt: Assiut university, PhD
thesis.
El-Prince, E. and Abd El-Mohsen, M. 2001. Estimation of
some metallic pollutants in dried weaning baby foods.
Assiut Veterinary Medical Journal 45(90): 166-177.
FAO/WHO, joint Expert Committee on food Additives,
WHO Technical Report series No. 505(1972); No.
555(1974c); No. 683(1982); No. 751(1987) and No.
776 (1989). Evaluation of certain food additives and
contaminants, Geneva.
FAO/WHO Joint Expert Committee on Food Additives
1999. Summery and conclusions. 53rd Meeting,
Rome.
levels in some selected food items. Veterinary Medical
formula contamination in Italy. Food Chemistry 32:
1-8.
Food and Nutrition Board, 1980. Committee on dietary
allowances recommended dietary allowances. National
Academy of Sciences, Washington.
Foster, J.J. 2001. Data Analysis Using SPSS for Windows:
Fraga, C.G. 2005. Relevance, essentaility and toxicity of
trace elements in human health. Molecular Aspects of
Medicine 26: 235-244.
and Sanchez, J. 1999. Trace element determination
in different milk slurries. Journal of Dairy Research
66(4): 569-578.
Dairy Science 59(2): 243-49.
Hamouda, A.A.T. 2002. Heavy metal residues and
preservatives in some imported dairy products.
Zagazig, Egypt. Zagazig University, PhD thesis.
of trace quantities of selenium and arsenic in canned
tuna fish by using electroanalytical techniques. Food
chemistry 48: 85-93.
Ikem, A., Nwankwoala, A., Oduyeungbo, S., Nyavor, K.
and Egiebor, N. 2002. Levels of 26 elements in infant
formula from USA, UK, and Nigeria by microwave
digestion and ICP–OES. Food Chemistry 77: 439-
447.
Johnson, M.D., Kenney, N., Stoica, A., Hilakivi-Clarke,
L., Singh, B., Chepko, G., Clarke, R., Sholler, P.F.,
Lirio, A.A. and Foss, C. 2003. Cadmium mimics the
in vivo effects of estrogen in the uterus and mammary
Jorhem, L. 2000. Determination of metals in food by
atomic absorption spectrophotometry after dry
ashing: NMKL collaborative study. Journal of AOAC
International 83(5): 1204-1211.
Jorhem, L. and Engman, J. 2000. Determination of lead,
cadmium, zinc, copper and iron in foods by atomic
absorption spectrometry after microwave digestion:
NMKL collaborative study. Journal of AOAC
International 83(5): 1189-1203.
Determination of Cd, Co, Cr, Cu, Fe, Ni and Pb in
milk, cheese and chocolate. Mikrochimica Acta 134:
185-191.
and Doull’s Toxicology, 3rd edn, New York, McGraw-
Hill.
Patient Care Committee of the North American
Society for Pediatric Gastroenterology and Nutrition.
Position Statement of the North American Society for
Pediatric Gastroenterology and Nutrition: Aluminium
in Large and Small Volume Parenterals Used in Total
Parenteral Nutrition: Response to the Food and Drug
Administration (FDA) Notice of Proposed Rule by the
North American Society for Pediatric Gastroenterology
$s-sub/aluminum.asp.
Lopez-Garcia, I., Vinases, P., Romero-Romero, R. and
Hernandez-Cordoba, M. 2009. Ion exchange
preconcentration and determination of vanadium in
milk samples by electrothermal atomic absorption
Lead, cadmium and mercury in milk products. Assiut
Veterinary Medical Journal 30(60): 139-146.
Total determination of essential and toxic elements in
milk whey by double focusing ICP-MS. Journal of
Changes in the distribution of cadmium and lead in
human and bovine milk induced by heating or freezing.
Medina, J., Hernandez, F., Pastor, A. and Beforull, J.B.
1986. Determination of mercury, cadmium, chromium
and lead in marine organisms by flameless atomic
absorption. Marine Pollution Bulletin Journal 17: 41-

