

Identification and quantification of headspace volatile constituents of okpehe, fermented *Prosopis africana* seeds

*Onyenekwe, P. C., Odeh, C. and Enemali, M. O.

Department of Biochemistry and Molecular Biology, Nasarawa State University, P. M. B. 1022, 930001 Keffi, Nigeria

<u>Article listory</u>	<u>Abstract</u>
Received: 23 July 2013 Received in revised form: 16 January 2014 Accepted: 18 January 2014 Keywords	The volatile Traditional Chromatogr was by com are about 5
Condiment Fermented Flavour Okpehe Prosopis africana Volatile components	benzene der the volatiles strong impa

Introduction

Article history

Okpehe, a fermented flavouring food condiment, most popular in the middle belt of Nigeria, is produced from *Prosopis africana*, a leguminous oil seed. It is a strong smelling mash of sticky dark brown seeds and produced in moist solid state fermentation by chance inoculation, supposedly by various species of microorganisms (Ogunshe, 1989).

Abstract

Prosopis africana also known as African mesquite is of the genus *Prosopis* in the family of *Fabaceae* and of the order of *Fabales*. It can grow up to 20 m in height; has an open crown and slightly rounded buttresses, bark is very dark, scaly, slash, orange to red brown with white streaks. The pods are cylindrical, hard and shinny up to 1.5 - 3 cm compartmented with woody cells. The flowering of *Prosopis africana* occurs shortly before the onset of rains and seed matures in February to March containing some loose rafting seeds per pod and 7,500 – 8000 seed per kg (Keay, 1982).

The pods have a thick pericarp consisting of three layers: a hard woody exocarp, a pulpy mesocarp and a thin septate endocarp between the seeds. The pod is fleshy when immature, but dries at maturity leaving the seeds loose 'rattling'. Each pod contains about 10 seeds, each one in its own compartment (septum). The seeds are embedded within a pulpy matrix (mesocarp). The hard seed coat is impermeable to water. The mean thousand seed weight is 146 g. The seeds contain c. 2% neutral lipids (Keay, 1982).

he volatile components of the fermented seeds of *Prosopis africana*, (okpehe), were determined. raditional method of production was used. The volatile constituents were analyzed by Gas thromatography using the PDMS-SPME head space technique and identification of volatiles was by comparing their retention time and mass spectra with those of the library. In all, there re about 51 volatile components with 8 alcohols, 15 aldehydes, 8 ketones, 2 acetates, 11 enzene derivatives, 4 alkanes, 2 alkenes and 4 others. The aldehydes constitutes the bulk of ne volatiles followed by the pyrazines. Most of the identified compounds are known to have rrong impact on the flavour and fragrance of fermented and roasted products.

© All Rights Reserved

Extraction of *Prosopis* seed is generally difficult because the seeds are imbedded in a pulpy mesocarp within a hard dry pod. Grinding mills have been used to remove the outer dry pod. The pods are then soaked in a 0.1 M solution of hydrochloric acid for 24 hours. The pods can then be washed in water for 1 hour and sun dried. The dried mass can then be pounded to separate the seeds from the coating. Traditionally the pods are immersed in boiling water and allowed to cool and remain soaked in water for 24 hours, after which the fruits are easily opened. The seeds are cleaned by robbing in between palms (Booth and Wickens, 1988).

Apart from the use of the fermented seeds as food condiments, the seeds are used as animal feed. The fermented products are known by different names by various ethnic groups in Nigeria - okpehe in Idoma, kiriya in Hausa, gbaaye in Tiv and okpiye in Igala. Although significant efforts had been made to understand the microbial and biochemical characteristics of fermented Prosopis africana seeds (Ogunshe et al., 2007; Balogun and Oyeyiola, 2012) none to our knowledge had dwelt on the flavour constituents. Ammoniac odour has been found to be a common odour of most fermented leguminous products as a result of protein degradation, however each product has unique characteristic odour that makes it possible for one product to be differentiated form another apart from the texture and colour. This study was therefore designed to identify the volatile constituents of fermented Prosopis africana seeds

^{*}Corresponding author. Email: *pconyenekwe@yahoo.com* Tel: +234 803 634 7293

Materials and Method

Sample collection

The harvested pod of *Prosopis africana* were picked from a farm in Otukpo, Benue State Nigeria. The hard pod was broken with mortar and pestle to collect the seeds. The seeds were sorted to remove stones and bad ones. The leaves used for fermentation were purchased from Keffi main market Nasarawa State.

Preparation of the cooked fermented sample of Prosopis Africana seed (okpehe)

Preparation of the fermented seeds was carried out as described by Ogunshe (1989). The cooked cotyledons were spread into a sterile nylons and fermented for 7 days in an incubator at 37°C to produce a sticky mucilaginous light brown and odorous mash of Okpehe condiment.

Identification of volatile components of okpehe

The volatile constituents were analyzed by gas chromatography using the PDMS-SPME head space technique. To extract the volatile constituents, 5 g of the mashed fermented seeds were transferred into capped glass vial and SPME fiber-Polydimethylsyloxane-Divinylbenzene (PDMS-DVB) polymer was used for extraction. The extraction was held for 30 min at a temperature of 60°C. The constituents of the extract were analysed using GC-MS by direct injection method in the split mode with (split ratio 20:1) under the following conditions; Hewlett - Packard 6890 GC equipped with a flame ionization detector (FID) and a quartz capillary column; 30 m x 0.25 nm x 0.25 nm, nitrogen was used as carrier gas, oven temperature 60°C (initial) with oven programmed at 220°C, detector temperature 300°C, hydrogen pressure and compressed air were 28 psi and 35 psi, respectively. A digital integrator was then used to integrate the area of the signal from the detector. The integrated area, retention time and composition in mg/100 g were printed automatically at the end of each peak.

Identification of Components

The qualitative identification of the different constituents was performed by the comparison of their retention times and mass spectra with those of the database of National Institute Standard and Technology (NIST) having more than 62,000 patterns. The spectrum of the unknown component was compared with the spectrum of the known components stored in the NIST library. The name, molecular weight and structure of the components of the test materials were ascertained.

Results and Discussion

Using headspace analysis, a total of 51 constituents were identified. On weight basis the aldehydes are the dominant group. Table 1 shows the alkanolic constituents of okpehe, with the major alkanolic constituents been undecanol, octanol, ethanol, propanol, and dodecanol. The alkanols present in the condiment help prevent them from spoilage since alkanols are known to act as antifungal and prevent food spoilage. Most of these alkanols had been reported present in other fermented leguminous products (Dajanta et al., 2010; Onyenekwe et al., 2012). From the result Okpehe contains 15 aldehydes, with hexanal, heptanal, 2-nonanal, nonanal, 2,4 decadienal, Decanal, dodecanal, 2,4 - nonadienal, 2-butyloctenal, 2, 4-decadienal been the major. The odour in the fermented food condiment could be due to the presence of these aldehydes. This is consistence with the previous work of Grosch (1982) that carbonyl compounds such as aldehyde and alcohol have strong impact on odour because of their sensitivity to olfactory receptors. Hexanal, the dominant aldehyde, is a key organoleptic element of green-note that is found in both fragrances and flavours (Schade et al., 2003), such as traditional commercial shrimp paste kapi (Wittanalai et al., 2011) and fermented soybean, melon and locustbean (Onyenekwe et al., 2012). Hexanal is produced during advanced lipid oxidation, promoted by alkyl and alkoxyl radicals (Abdalla and Roozen, 1999). The effectiveness of hexanal as a metabolizable fungicide and enhancer of aroma production by its inter conversion to other aroma volatiles in minimally processed apples has been demonstrated (Song et al., 1996; 1997).

Eight ketones were identified and quantified in the sample and they are acetophone, acetophenone, 2-nonadecanone, 3-ethylhexanone, 3-ethyloctanone, ethylnonanone, 2,5-hexadione and 3-ethythepentanone. Ketones are usually derived from lipid and amino acid degradation during microbial fermentation and have a high impact on food odour (Owens *et al.*, 1997), ketones may contribute to the odour of Okpehe, this is in consistent with the work of Stephan and Steinhart (1999) that identified 17 ketones in soyabean lecithin.

The table shows the ester constituents of the condiment, the higher concentration of esters compared with the levels reported by Onyenekwe *et al.* (2012) in ogiri (fermented melon seed) and daddawa (fermented locustbean and soybean seeds) may be responsible for the 'fruitiness' associated with okpehe. The acetates of higher alcohols and the ethyl ester of fatty acids had been suggested to be the most

S/No	Retention time [min]	Name of constituents	mg/100 g
Girto	recention time (mar)	Alkanols	me/100 E
1	7.653	Ethanol	6.977
2	9.826	Propanol	0.492
3	10.792	1,2-Eth an ed io l	0.11
4	18.677	1-Octan-3-01	5.357
5	18.773	Octanol	2.923
6	24.784	Dodecanol	4.041
7	25.257	Undecanol	5.277
		3,7,11-Trimethyl-2,6,10-	
8	31.356	d o d ecatrien - 1 - 0 l	11.564 36.741
		A cids and esters	
9	12.830	Eth y l acetate	13.939
10	14.157	Eth y l h ex an o ate	13.333
11	30.985	9,12-Octad ecad ien o ic acid (Z,Z)	5.826
12	31.834	O ctad ecy1 acetate	2.741 35.839
		Alkanones(Ketones)	
13	18.125	Acetophone	2.662
14	18.394	Acetophenone	2.215
15	22.312	2-Nonadecanone	1.457
16	22.503	3-Ethylhexanone	1.022
17	22.832	3 Eth y l h ep tan on e	2.682
18	23.217	3 - Eth y l o ctan o n e	2.228
19	23.952	Ethylnonanone	2.949
20	26.933	2,5-Hexadione	2.099
			17.314
		Alkanals(Aldehydes)	
21	11.142	P en tan al	0.247
22	11.367	H ex an al	39.181
23	14.501	Ben zald eh y d e	3.993
24	15.027	Ben zen eacetald eh y d e	3.483
25 26	18.009 18.956	Heptanal 2-Nonenal	1.827 2.183
26	19.246	2-Nonenai Nonanal	0.657
28	19.917	Decan al	0.62
29	20.611	2-Butyl-octenal	0.413
30	20.935	Dodecanal	0.27
31	21,982	2,4-Nonadienal	1.108
32	24.704	2,4-Decadienal	2.383
33	27.610	H en d ecan al	0.123
34	28.435	2-Nonenal	1.357
35	29.215	2,4-Undecadienal	4.709
36	29.695	2,4,6-Dod ecatrien al	4.209
			68.764
		Hydrocarbons	
37	19.784	D ecen e	1.131
38	21.435	Cy clo tetr ad ecan e	0.487
39	25.799	Tetrad ecen e	3.504
40	28.760	Cyclododecane	5.091
41	30.138	Cy clo h ex ad ecan e	6.13
42	32.918	H ex aco san e	8.358 24.701
		Pyrazine	24./01
43	16.115	2-Ethyl-6-methylpyrazine	4.399
44	16.224	2,6-Dimethylpyrazine	3.113
45	16.459	Trimethyl pyrazine	2.484
46	16.544	Tetrameth y l p y razin e	9.797
47	16.924	2,5-Dimethylpyrazine	1.647
		n.	21.44
4.0	12.022	Benzenes	7 (5)
48	13.832	Toluene	7.653
49	15.797	1,2-Dimethylbenzene	4.6 12.253
		Others	12.233
50	15.388	Dimethyldisulphide	12.021
51	30.811	2,6-Diphenylpyridine	7.842
	-		19.863

Table 1. Concentrations of volatile compounds (mg/100 g dry basis) in fermented *Prosopis africana* (Okpehe)

desirable compounds in miso products to enhance the aroma of the finished products and are responsible for the fruity tinge of freshly prepare miso (Giri *et al.*, 2010).

The major benzene derivative present in the food condiment include toluene, benzaldehyde, benzeneacetaldehyde, 1, 2 – dimethyl benzene, 2 – ethyl 5 – methyl pyrazine, 2, 6 – dimethyl pyrazine, trimethylpyrazine, tetramethylpyrazine2, 5–dimethyl pyrazine, 2, 6 – diphenyl pyrazine. This is consistent with previous work by Sogawara *et al.* (1985) who found 7 pyrazine derivatives in commercial and home – made natto. Lee and Ahn (2009) detected 9 pyrazine in commercial doenjang, while Onyenekwe *et al.* (2012) observed that pyrazines are the most dominant flavor constituents of daddawa (fermented locustbean

seeds) after aldehydes and the major components been 2, 5 – dimethyl pyrazine, tetramethyl pyrazine and trimethyl pyrazine. Microbial fermentation of legumes is known to increase the free amino acids content by five folds (Odunfa, 1986) and some of these amino acids are precursors of pyrazines. Threenine could be the precursor of 2, 5 - dimethylpyrazine while tetramethyl pyrazine can be produced from different amino acids example glycine, alanine, valine, isoleucine and leucine via Strecker degradation and deamination (Shu, 1998). Tetramethyl pyrazine is also derived from an interaction of acetoin (the bye product of maillard reaction) and ammonia (Larroche et al., 1998). Pyrazines had been related to the sensory attributes of soy sauce (Lee and Ahn, 2009). Tetramethyl pyrazine, the most abundant heterocycline, reported to be the most abundant flavor compound in dark chocolate (Afoakwa et al., 2009) was reported to exhibit milk-coffee-roasted-cooked notes. Apart from its sensory attributes, tetramethyl pyrazine has been shown to have antioxidant activity (Wang et al., 2012). This coupled with the fungicidal and bactericidal activities of other constituents may be responsible for non-spoilage of this condiment no matter how long it is stored without refrigeration.

The major alkanes present in the condiment include cyclododecane. hexacosane and cyclotetradecane. While the major alcoholic constituents of the condiment include 1 - octanol., 3, 7, 11, - trimethyl -2, 6, 10 - dodetrien -1 - ol and 1, 2, – ethanediol with variation in concentration. Alcohols contribute to the flavour of the condiments. This is consistent with previous work where alcohol was reported in soy sauce, (Lee and Kwok, 1987), Miso (Ku et al., 2000) and Korea doenjang (Park et al., 1994) as important contributor of flavour. Hexanol and 1 - octen - 3 - ol arise from enzymatic oxidation of linoleic and linolenic acid (Tressl et al., 1982).

Other volatile constituents present in the fermented food condiment include Dimethyl disulphide, a non-glucosinolate derived from sulphurcontaining compounds, known for its toxic effect to a broad range of fungal and bacterial species. Dimethyl disulphide is one of the most important aroma compounds of black truffle (*Tuber melanosporum*) aroma (Culleré *et al.*, 2010).

Conclusion

Okpehe like other condiments which has taste enhancing properties and serves as non meat substitute for low-income families in some parts of Nigeria requires a food processing technology that will meet the requirement and challenges of human needs. Therefore, a more elaborate study to optimize the processing methods should be done. Also because the processing of Okpehe and other local condiments are still craft based remarkably, in many parts of Nigeria today, they are still made in traditional way. They often have a stigma attached to them due to the odour and they are often considered as food for the poor.

Acknowledgement

The authors are grateful to TEFund, Nigeria for providing the fund for this project.

References

- Abdalla, A.E. and Roozen, J.P. 1999. Effect of plant extracts on the oxidative stability of sunflower oil and emulsion. Food Chemistry 64: 323–329
- Afoakwa, E. O., Paterson, A., Fowler, M. and Ryan, A. 2009. Matrix effects on flavour volatiles release in dark chocolates varying in particle size distribution and fat content using GC–mass spectrometry and GC– olfactometry. Food Chemistry 113: 208–215
- Balogun, M. A. and Oyeyiola, G. P. 2012. Changes in the nutrient composition of Okpehe during fermentation. Pakistan Journal of Nutrition 11: 270-275
- Booth, F. E. M. and Wickens G. E. 1988. Non-timber uses of selected arid zone trees and shrubs in Africa. Rome, FAO Conservation Guide 19.
- Culleré, L., Ferreira, V., Chevret, B., Venturini, M. E., Sánchez-Gimeno, A. C. and Blanco, D. 2010. Characterisation of aroma active compounds in black truffles (*Tuber melanosporum*) and summer truffles (*Tuber aestivum*) by gas chromatography– olfactometry. Food Chemistry 122: 300–306
- Dajanta, K., Apichartsrangkoon, A. and Chukeatirote, E. 2011. Volatile profiles of *thua nao*, a Thai fermented soy product. Food Chemistry 125: 464–470
- Giri, A., Osako, K. and Ohshima, T. 2010. Identification and characterisation of headspace volatiles of fish miso, a Japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing. Food Chemistry 120: 621–631
- Grosch, W. 1982. Lipid degradation products and flavour. In Morton I. D and Macleod A. J. (Eds.), Food Flavours. Part A. Introduction, p. 325-397. Amsterdam: Elsevier Scientific Publishing Company.
- Keay, R.W. J. 1982. Nigerian trees. Ibadan: Department of Forestry Research.
- Ku, K. L., Chen, T. P., and Chiou, R. Y. 2000. Apparatus used for small-scale volatile extraction from ethanol-supplemented low-salt miso and GC-MS characterization of the extracted flavours. Journal of Agricultural and Food Chemistry 48: 3507-3511.
- Larroche, C., Besson, I. and Gros, J.B. 1999. High pyrazines production by *Bacillus subtilis* in solid substrate fermentation on ground soybeans. Process

Biochemistry 34: 667-674.

- Lee, M. H. and Kwok, K. F. 1987. Studies on the flavour components of soy sauce. Journal of Chinese Agricultural Chemistry Society 25: 100-111.
- Lee, S. J. and Ahn, B. 2009. Comparison of volatile components in fermented soybean pastes using simultaneous distillation and extraction (SDE) with sensory characterisation. Food Chemistry 114: 600-609
- Odunfa, S. A. 1986. Daddawa. In Reddy, N.R., Pierson, M.D. and Salunkhe, D.K. (eds.). Legume-based fermented foods, p. 173-189. Boca Raton: CRC Press Inc.
- Ogunshe, A.A.O. 1989. Studies on Okpehe a Nigerian fermented seasoning agent from *Prosopis africana* (Guill & Perr) Taub. Ibadan, Nigeria: University of Ibadan, B.Sc. dissertation.
- Ogunshe, A. A.O., Omotosho, M. O. and Ayansina A.D.V. 2007. Microbial studies and biochemical characteristics of controlled fermented afiyo - a Nigerian fermented food condiment from Prosopis africana (Guill and Perr.) Taub. Pakistan Journal of Nutrition 6: 620-627.
- Onyenekwe, P C., Odeh, C. and Nweze, C. C. 2012. Volatile constituents of ogiri, soybean daddawa and locust bean daddawa, three fermented Nigerian food flavour enhancers. Electronic Journal Environmental, Agricultural and Food Chemistry 11:15-22
- Owens, J. D., Allagheny, N., Kipping, G., and Ames, J. M. 1997. Formation of volatile compounds during Bacillus substilis fermentation of soybeans. Journal of the Science of Food and Agriculture 74:132-140.
- Park, J. S., Lee, M. Y., Kim, K. S. and Lee, T. S. 1994. Volatile flavour components of soybean paste (doenjang) prepared from different types of strains. Korean Journal of Food Science and Technology 26: 255–260.
- Song, J., Deng, W., Fan, L., Verschoor, J., Beaudry, R. and Gonry, J.R. 1997. Aroma volatiles and quality changes in modified atmosphere packaging. Proceeding of "Fresh-cut fruits and vegetables and MAP Symposium p. 19–25. Davis, CA, USA
- Song, J., Leepipattanawit, R. and Beaudry, R. 1996. Hexanal vapour is a natural, metabolizable fungicide: inhibition of fungal activity and enhancement of aroma biosynthesis in apple slice. Journal of American Society of Horticultural Science 121(5): 937–942.
- Shu, C. K. 1998. Pyrazine formation from amino acids and reducing sugars, a pathway other than strecker degradation. Journal of Agricultural and Food Chemistry 46: 1515-1517.
- Stephan, A. and Steinhart, H. 1999. Quantification and sensory studies of character impact odorants of different soybean lecithin. Journal of Agricultural and Food Chemistry 47: 4357–4364.
- Sugawara, E., Ito, T., Odagiri, S., Kubota, K. and Kobayashi, A. 1985. Comparison of compositions of odour components of natto and cooked soybeans. Agricultural and Biological Chemistry 49: 311–317.
- Tressi, R. Bahri, D. and Engel, K. H. 1982. Formation of eight-carbon and ten-carbon components in

mushrooms. Journal of Agricultural and Food Chemistry 30: 89-93.

- Wang, A., Zhang, J. and Li, Z. 2012. Correlation of volatile and non-volatile components with the total antioxidant capacity of tartary buckwheat vinegar: Influence of the thermal processing. Food Research International 49: 65–71.
- Wittanalai, S., Rakariyatham, N. and Deming, R. L. 2011. Volatile compounds of vegetarian soybean kapi, a fermented Thai food condiment. African Journal of Biotechnology 10: 821-830.