Commercial lactic acid bacteria and probiotic strains- tolerance to bile, pepsin and antibiotics

Ashraf, R. and Smith, S.C.

Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, Werribee Campus, P.O. Box 14428, Melbourne, Vic 8001, Australia

School of Exercise and Nutrition Sciences, Faculty of Health, Gut Health SRC Molecular and Medical Research, Deakin University, Burwood, Victoria, 3125, Australia

Abstract

Screening and characterization of probiotic strains is crucial for achieving expected health benefits. In the current study, seventeen lactic acid bacteria (LAB) and probiotic strains were screened for survival in simulated gastric juice (pH 3 and 2) and bile (0.5% or 2.0%) for 3 and 12h, and antibiotic tolerance pattern using Etest® and Kirby Bauer Disc diffusion method. All tested strains exhibited survival during simulated gastric transit at pH 3 for 3 h. Lactobacillus reuteri, L. rhamnosus G535, L. acidophilus 388, L. delbrueckii subsp. bulgaricus 11842, Streptococcus thermophilus 1342, Bifidobacterium lactis BB12 and S. thermophilus M5 were found intrinsically tolerant to gastric and small intestinal transit and most tolerant strains among tested LAB (% survival ≥ 55). All strains were susceptible to ampicillin and erythromycin. Vancomycin and streptomycin tolerances were most common among species whereas tolerances for gentamicin, clindamycin and tetracycline were rare. The tolerances could provide additional benefit to strains in colonizing and replenishing gut microbiota after antibiotic therapy. The results obtained in the study confirm that strain viability in gastric and bile solution and antibiotic susceptibility are important attributes in the selection of potentially probiotic bacteria.

Introduction

Over the past decade, probiotics have received overwhelming attention in promoting better health and well-being. In this regard, lactic acid bacteria (LAB) including Lactobacillus and Bifidobacterium species are predominantly used (Holzapfel and Schillinger, 2002). The currently accepted definition of probiotics is ‘live microorganisms that, when administered in adequate amounts, confer a health benefit on the host’ (Hill et al., 2014). Probiotic bacteria are commonly incorporated in dairy products such as yoghurt, fermented milk drinks, cheeses, health supplements and other functional foods. It is generally recommended for a given strain to satisfy a number of requirements in order to achieve ‘probiotic’ status. Consecutively, the probiotic products must fulfil the legislative requirements with respect to labelling, safety and strain integrity of probiotic bacteria (Charteris et al., 1997; Holzapfel and Schillinger, 2002; Balamurugan et al., 2014). It is important that the ingested strains survive through gastric transit and reach the colon in quantities large enough to facilitate colonization and confer beneficial effects on host (Weber and Polanco, 2012). Generally accepted minimum number of each viable probiotic strain is ≥10⁶ viable cells/g of product at the end of shelf life (Ashraf and Shah, 2011; Champagne et al., 2011). Even if bacterial numbers are sustained during shelf life, viability may be compromised after consumption challenged by unfavourable physiological conditions of the gastrointestinal tract (GIT) including gastric acid present in the stomach and bile in the duodenum (Salminen et al., 1998). Survivability of bacteria is also challenged by possible presence of antibiotics after antibiotic therapy. Sensitivity and tolerance of probiotics to these challenges presents a key parameter for their application in different foods (Vasiljevic and Shah, 2008; Ruiz et al., 2011). Thus screening and selection of an appropriate probiotic strain is crucial for achieving expected health benefits and necessitates scrupulous investigation of strain differences (Dunne et al., 2001; FAO/WHO, 2002). Therefore, the present study was focused on assessing ‘strain variability’ of seventeen LAB including commercial probiotic strains in terms of survival to simulated gastric juice, bile solution and antibiotics; under conditions that may mimic human GI environment.

Like other stresses, bacterial strains have evolved...
approaches to overcome antibiotic stress, which had dramatically affected the marked therapeutic successes of antibiotics. These strategies fall into two categories i.e. ‘resistance’ and ‘tolerance’. ‘Resistance’ allows a microorganism to grow in the constant presence of the antibiotic, given that the concentration of the antibiotic is not too high and ‘tolerance’ enables a microorganism to survive antibiotic treatment, even at high antibiotic concentrations, provided the duration of the treatment is limited (Fridman et al., 2014). Phenotypic tolerance can be elicited by environmental factors (such as nutrient deprivation and pH changes) that result into antibiotic-induced killing, whereas genotypic tolerance can arise from specific genetic changes within the tolerant bacteria (Bayles, 2007). Unfortunately, little is known about the molecular mechanisms for antibiotic tolerance in bacteria and the evolution of ‘tolerance’ is much neglected than its counterpart. Also, the set back of antimicrobial treatment is greatly blamed for ‘resistance’ (Fridman et al., 2014), so here we followed the term ‘tolerance’ to characterise the survival of LAB in the presence of antibiotics.

The knowledge of antibiotic tolerance could be deciphered into controlling or treating cases of antibiotic-associated diarrhoea or cases of gastrointestinal disorders through concomitant antibiotic therapy (Salminen et al., 1998; Mackay et al., 1999; Salvana and Frank, 2006; Tommasi et al., 2008). In our previous studies (Ashraf et al., 2014ab), commercial probiotic and LAB were investigated for their immuno-modulatory responses, in particular to their in-vitro cytokine production and induction of regulatory T cell responses. The present study involved the screening these probiotic and LAB for metabolic attributes including assessment of survival in simulated gastric conditions, and antibiotic susceptibilities in order to bring about a rational selection of strains for specific uses and assessing their stability for future immunological studies.

Materials and Methods

Bacterial strains and culture conditions

Seventeen LAB and probiotic strains previously described (Ashraf et al., 2014a) including Lactobacillus paracasei 292, L. salivarius 5248, L. reuteri, Lactococcus lactis, L. rhamnosus G5435, L. acidophilus 2401, L. acidophilus 388, L. delbrueckii subsp. bulgaricus 11842, Streptococcus thermophilus 1342, L. casei 290, Bifidobacterium breve BB99, B. animalis subsp. lactis BB12, B. longum 1941, Lc. lactis R704, L. plantarum 276, L. rhamnosus 5434 and S. thermophilus M5 were used in the current study. Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 were obtained from Deakin University Culture Collection (Burwood, Victoria, Australia) and used as quality control strains and maintained in prepared sheep blood agar (Microbiology Media Preparation Unit, The University of Melbourne, Parkville, Victoria, Australia) and triplicate soy agar (Sigma-Aldrich Pty Ltd. NSW Australia). The parent stock cultures were kept at -80°C in phosphate buffered saline (PBS; Oxoid, Melbourne Australia) containing 40% glycerol whereas lyophilized cultures were stored at -20°C freezer. Propagation of cultures was carried out twice successively in de Man Rogosa and Sharpe (MRS) broth (Oxoid) at 37°C for 18 h and samples were removed for gram stain to check for purity and bacterial morphology. Bacteria were further grown on MRS agar (1.5% w/v agar) as reference medium to observe the colonial characteristics. For the propagation of bifidobacteria, filter-sterilized L-cysteine-HCl (0.05% w/v) was also added to the medium.

Media preparation

Rehydrated MRS broth was prepared according to the manufacturer instructions. The pH-modified MRS agar was obtained by adjusting the pH of the broth to 7.0 using 1.0 M HCl. In order to facilitate the growth of anaerobic bifidobacteria, filter-sterilized L-cysteine-HCl (0.05% final concentration) was added to the medium. Bacteriological peptone solution was used as diluent and it was prepared by dissolving 0.15% (w/v) bacteriological peptone (Oxoid, West Heidelberg, Australia) in mili-Q water. The pH of diluents was adjusted to 7.0 ± 0.2, and it was dispensed in McCartney bottles in 9ml aliquots. All media were sterilized by autoclaving at 121°C for 15 min.

Viability of probiotic and LAB strains in simulated gastric juice and bile solutions

Preparation of washed cell suspension

The propagated cultures were subjected to low speed centrifugation (Beckman J2/HS centrifuge, JA-14 rotor, Palo Alto, CA, USA) at 4000 g for 10 min at 4°C to concentrate cells. Cells were harvested and washed three times in phosphate-buffered saline (PBS; 130 mM sodium chloride, 10 mM sodium phosphate, pH 7.4) and finally resuspended in PBS. Prior to assay of bacterial tolerance to simulated gastric juice and bile solutions, the total viable count of the washed cell suspension was determined using a pour plate technique as previously described (Ashraf
Preparation of simulated gastric juice and bile solutions

The simulated gastric juice was prepared by suspending 0.3% (w/v) pepsin from porcine gastric mucosa (Sigma) in saline (0.5%, v/v) solution. The pH of gastric suspension was adjusted to 2.0 and 3.0 with 1M HCl and filter-sterilizing using 0.45-µm pore size filter (Merck Millipore, Bayswater Vic, Australia). The bile solutions were prepared by suspending bovine oxgall powder (Sigma) in distilled water to obtain 0.5% (w/v) and 2.0% (w/v) final concentrations respectively, followed by autoclaving at 121ºC for 15 min.

Survival of bacteria in simulated gastric juice and bile solutions

The gastric and acidic tolerance of seventeen probiotic and LAB strains was determined using the method described by Charteris et al. (1998a). Briefly, the washed cell suspension (1.0 ml) was added to 9.0 ml simulated gastric juice (pH 3.0 and 2.0) or bile solution (0.5% or 2.0%) and was vortexed for 15 s for complete dispersion of cells. Samples (0 h) were taken immediately after mixing of suspensions and viable counts were determined. The mixtures were then incubated at 37ºC for 15 min.

Antibiotic susceptibility pattern of probiotic and LAB strains

Inoculum preparation

The inoculum was prepared by making a direct saline suspension of isolated colonies selected from cultures grown on MRS agar plate for 48 h. The bacterial cell density of suspensions was adjusted to match McFarland turbidity standard 0.5 (≈ 1.5 × 108) using saline, a vortex mixer and spectrophotometer.

Kirby-Bauer disc diffusion test

The bacterial suspensions were swabbed evenly onto MRS agar plates with a sterile cotton swab. The plates were left ajar in laminar flow for 10-15 min to dry and to allow the absorption of excess moisture. Antibiotic discs (Oxoid, Australia) of penicillin G (P5U), imipenem (IPM 10µg), vancomycin (VA 30µg), amoxicillin/ clavulanic acid (AMC 30µg), ampicillin (AMP 10µg), gentamicin (CN 10µg), tetracycline (TE 30µg), streptomycin (S 10µg), erythromycin (E 10µg), clindamycin (DA 10µg) were applied onto the surfaces of inoculated agar using disc dispenser (Oxoid, Australia). The plates were incubated under anaerobic conditions for 48 h at 37ºC with the exception of plates for Lactococcus strains, Streptococcus strains, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, which were incubated aerobically at 37ºC for 24 h. Inhibition zone diameters were measured including the diameter of the discs (in mm) and results were interpreted according to the cut-off levels (Charteris et al., 1998a; Tang et al., 2007) and are presented in Table 1. The assays were repeated on three independent occasions.

Table 1: Antibiotic susceptibility profile of LAB and probiotic strains tested by disc diffusion method

<table>
<thead>
<tr>
<th>culture</th>
<th>E. coli 25922</th>
<th>S. aureus 25923</th>
<th>L. reuteri</th>
<th>L. acidophilus</th>
<th>L. acidophilus</th>
<th>L. acidophilus</th>
<th>L. acidophilus</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM100</td>
<td>15.0 ± 0.5</td>
</tr>
<tr>
<td>AM150</td>
<td>15.0 ± 0.5</td>
</tr>
<tr>
<td>AM200</td>
<td>15.0 ± 0.5</td>
</tr>
<tr>
<td>AM250</td>
<td>15.0 ± 0.5</td>
</tr>
<tr>
<td>AM300</td>
<td>15.0 ± 0.5</td>
</tr>
</tbody>
</table>

Data expressed as mean inhibition zone diameter (mm) ± SE

* Tolerant
and in duplicate each time. MRS agar was used in the assays rather than the standard susceptibility test media including Mueller-Hinton and Iso-Sensitest agar, in order to support the good growth of LAB strains (Danielsen and Wind, 2003). Disc-diffusion assay was repeated using MRS agar pH 7.0, in order to check the influence of pH variation and found insignificant (p > 0.05) differences in antimicrobial susceptibility pattern (data not shown).

Etest®

Minimum inhibitory Concentration (MIC) of 7 antibiotics was determined by Etest® method using MRS agar as medium. Etest®- strips (BioMérieux - Australia Pty Ltd.) of ampicillin (AM), clindamycin (CM), erythromycin (EM), gentamicin (GM), tetracycline (TC) and vancomycin (VA) were used in concentration range of 0.016-265 µg/ml while streptomycin (SM) was used in 0.064-1024 µg/ml. MRS agar plates were inoculated with the bacterial suspension as described above. The plates were left ajar in laminar for 10-15 min to allow the absorption of excess moisture. After drying the surfaces of the plates, Etest®- strips of all antibiotics were applied directly onto the surface of agar using Etest®- strip manual applicator (BioMérieux - Australia Pty Ltd). The plates were incubated under anaerobic conditions at 37°C for 48 h with the exception of plates for Lactococcus, Streptococcus, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, which were incubated aerobically at 37°C for 24 h. MICs were read directly from the test strip according to the manufacturer instructions. Since, there is no definitive and established breakpoint list for lactic acid bacteria, susceptibility to the antibiotics was determined by comparing MIC values to proposed breakpoints from several studies, as presented in Table 2. Strains with MICs equal to or higher than the breakpoints were considered tolerant.

Statistical analysis

All experiments and analyses were repeated twice or otherwise indicated. The Statistical Analysis System (SAS) was used to perform data analysis. Results were analysed using the General Linear Model (GLM) and significance was considered at p ≤ 0.05 for all analyses. The results for viability assay were presented as logarithmic values for averages of at least two replicates with overall standard error of mean. The results for disc-diffusion assay were presented as averages of three replicates with their standard deviation.

Results and Discussion

Probiotic bacteria are selected for their beneficial health properties as well as their ability to tolerate intestinal conditions (Lee et al., 2004). An essential element in their selection is their ability to reach, survive and persist in the environment in which they are proposed to act. Preferential site of colonization for lactobacillus in human gastrointestinal tract (GIT) is the terminal ileum and colon (Charteris et al., 1998c), where viability of these cultures is affected

<table>
<thead>
<tr>
<th>Culture</th>
<th>AM (µg/ml)</th>
<th>SM (µg/ml)</th>
<th>TC (µg/ml)</th>
<th>CM (µg/ml)</th>
<th>VA (µg/ml)</th>
<th>GM (µg/ml)</th>
<th>EM (µg/ml)</th>
<th>Multiple tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP392</td>
<td>0.064</td>
<td>0.19</td>
<td>4</td>
<td>>255</td>
<td>4</td>
<td>0.25</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>LS524B</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>>255</td>
<td>3</td>
<td>0.25</td>
<td></td>
<td>VA</td>
</tr>
<tr>
<td>L. reuteri</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>>255</td>
<td>24</td>
<td>0.38</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>L. lactis</td>
<td>0.125</td>
<td>0.38</td>
<td>0.38</td>
<td>>255</td>
<td>32</td>
<td>0.25</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>LS6434</td>
<td>0.003</td>
<td>0.12</td>
<td>0.25</td>
<td>>255</td>
<td>8</td>
<td>0.38</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>LA2401</td>
<td>0.19</td>
<td>0.75</td>
<td>0.75</td>
<td>>255</td>
<td>6</td>
<td>0.19</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>LA388</td>
<td>0.064</td>
<td>0.094</td>
<td>0.094</td>
<td>>255</td>
<td>6</td>
<td>0.125</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>LB16942</td>
<td>0.094</td>
<td>0.12</td>
<td>0.12</td>
<td>>255</td>
<td>8</td>
<td>0.38</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>ST1342</td>
<td>0.064</td>
<td>0.25</td>
<td>0.25</td>
<td>>255</td>
<td>6</td>
<td>0.38</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>LC290</td>
<td>0.19</td>
<td>0.38</td>
<td>0.38</td>
<td>>255</td>
<td>8</td>
<td>0.38</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>BB99</td>
<td>0.19</td>
<td>0.38</td>
<td>0.38</td>
<td>>255</td>
<td>2</td>
<td>0.19</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>BB12</td>
<td>0.125</td>
<td>0.25</td>
<td>0.25</td>
<td>>255</td>
<td>3</td>
<td>0.25</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>BL1945</td>
<td>0.19</td>
<td>0.38</td>
<td>0.38</td>
<td>>255</td>
<td>3</td>
<td>0.19</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>LC4704</td>
<td>0.19</td>
<td>0.25</td>
<td>0.25</td>
<td>>255</td>
<td>4</td>
<td>0.19</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>LP276</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>>255</td>
<td>3</td>
<td>0.19</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>LB1934</td>
<td>0.19</td>
<td>0.25</td>
<td>0.25</td>
<td>>255</td>
<td>3</td>
<td>0.25</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>ST55</td>
<td>0.125</td>
<td>0.12</td>
<td>0.12</td>
<td>>255</td>
<td>32</td>
<td>0.38</td>
<td></td>
<td>SMVA, GM, EM</td>
</tr>
<tr>
<td>E. coli ATCC 25923</td>
<td>0.094</td>
<td>0.023</td>
<td><0.016</td>
<td>1</td>
<td>2</td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. aureus ATCC 25923</td>
<td><0.016</td>
<td>0.023</td>
<td><0.016</td>
<td>1</td>
<td>2</td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Multiple tolerances phenotype and MIC values for LAB determined by Etest® method

vancomycin (VA), gentamicin (GM) and erythromycin (EM) according to the breakpoints defined/ suggested by:

- CLSI (2007),
- EFSA (2008),
- Possible interference of growth medium,
- Dušková and Karpíšková (2013),
- SCAN (2003),
- FEEDAP Panel Report (EFSA, 2005),
- Fórez et al. (2007),
- Anadón et al. (2006),
- Danielsen and Wind (2003),
- Klare et al. (2007) (oxytetracycline was used to present tentative ECOFF values).
mainly by gastric acid present in the stomach and bile in the duodenum (Lo et al., 2004; Mainville et al., 2005). Approaches for improving the survival and functionality of probiotic bacteria include but not limited to the selection of acid and bile tolerant strains. Also, selection of antibiotic tolerant strains could be advantageous for replenishing or maintaining the gut microbiota after antibiotic treatment (Jose et al., 2015). The present study was conducted to study the tolerances of seventeen LAB strains to bile, pepsin and antibiotics in order to ascertain their stability and select potential probiotic strains.

The effect of simulated gastric and small intestinal transit on the survivability (%) of seventeen LAB strains is shown in Fig. 1. All variables (the effect of bile at two different concentrations and pepsin at two different pH and their interactions) changed significantly (p < 0.05) during simulated gastric and small intestinal transit. All the tested strains exhibited survival during simulated gastric transit at pH 3 for 3 h; however, viability was affected at pH 2. L. reuteri, Lc. lactis, L. rhamnosus G5435, L. acidophilus 2401, L. acidophilus 388, L. delbrueckii subsp. bulgaricus 11842, S. thermophilus 1342, B. breve BB99, B. lactis BB12, B. longum 1941, Lc. lactis R704, L. plantarum 276 and S. thermophilus M5 retained viability after exposure to 0.5% bile for 12 h. Also, these strains except B. breve BB99 and L. plantarum 276 survived 2% bile for 12 h (1-2 log reduction in count) are intrinsically tolerant to small intestinal transit. L. paracasei 292 and L. casei 290, B. breve BB99, B. lactis BB12, B. longum 1941 and S. thermophilus M5 retained viability after exposure to 0.5% bile for 12 h at higher bile concentration (2%). For some strains such as L. rhamnosus G5435, L. acidophilus 388, S. thermophilus 1342, B. lactis BB12, B. longum 1941 and S. thermophilus M5, there was almost no variation in behaviour for increasing concentrations of bile. Although viability of all tested strains was influenced by increasing bile concentration (2%), more than 80% of isolates showed tolerance to 2% bile after 18 h exposure (data not shown). Overall, LAB and probiotic strains including L. reuteri, L. rhamnosus G5435, L. acidophilus 388, L. delbrueckii subsp. bulgaricus 11842, S. thermophilus 1342, B. lactis BB12 and S. thermophilus M5 remained viable at most extreme conditions of bile (2% for 12 h) and pepsin (pH 2 for 3 h). As such, the bile tolerance and low pH survivability make them most tolerant strains among the tested bacterial cultures.

The pH of the stomach generally ranges from pH 2.5 to pH 3.5 (Holzapfel et al., 1998) and the physiological concentrations of human bile range from 0.3 to 0.5% (Dunne et al., 2001). The concentration of bile salts in the small intestine varies...
from approximately 0.2% to 2.0% (w/v) in relation to the individual, type and amount of food consumed (Gunn, 2000). While screening for tolerant strains, 0.3% is considered to be critical concentration for bile-tolerance (Gilliland et al., 1984; Hyronimus et al., 2000; Zhou et al., 2007) and pH 3 is set as standard for acid tolerance (Sahadeva et al., 2011). It can thus be suggested, all tested strains are acid- and bile-tolerant (> 92% survival in pepsin pH 3 for 3 h; > 60% survival to 0.5% bile for 12h) except L. paracasei 292.

Tolerance to bile has not been linked to a specific mechanism but rather to a complex regulation of gene expression (Sánchez et al., 2005; Sánchez et al., 2007; Andriantsoanirina et al., 2013; Ruiz et al., 2013). The protonated (non-dissociated) form of the bile salts cause dissociation of lipid bilayer and integral protein of cell membranes, resulting in bacterial content leakage and finally cell death (Mandal et al., 2006). Bile salt tolerance is related to the activity of the bile salt hydrolase (BSH) which hydrolyses conjugated bile, thus minimizing its bactericidal effect on strains (Moser and Savage, 2001). As such in vitro conditions may not be truly reflective of in situ state and other physiological conditions might affect the strain survival (Morelli, 2000). In a probiotic product, the presence of food and food ingredients improve the viability and enhance ‘bile tolerance’ of the strains in GIT by preventing the bacteria from bile exposure (Huang and Adams, 2004; Begley et al., 2006; G. Vinderola et al., 2011). Thus in our study, strains demonstrating low tolerances to bile and pepsin may improve upon survival in gastric and small intestinal transit when consumed in food or encapsulated using different biopolymeric substances (Chávarri et al., 2010).

Viability of bifidobacteria at pH of gastric juices is generally low (Charteris et al., 1998c; Matsumoto et al., 2004; Mattó et al., 2004; Collado et al., 2005). Survival rates of less than 1% (at pH 3 for 2 h) have been reported (Takahashi et al., 2004). In comparison, strains of L. acidophilus appear to be more acid tolerant than Bifidobacterium spp. (Boylston et al., 2004). However this was not reflective for strain BB12 in our study, where viability of the strain was not much affected during simulated gastric transit. Similarly our results for S. thermophilus strains differed from the earlier findings reporting poor acid tolerance of some bacterial strains (Conway et al., 1987; Vinderola and Reinheimer, 2003). Strains of L. acidophilus (NS1, M23) and L. casei (MYB3) appear highly tolerant to 0.3% bile (Song et al., 2014), which supports our results for L. acidophilus spp. Tolerance to stomach and intestinal conditions is an important trait for probiotic bacteria in terms of their performance to survive, grow and exert action in the gut (Hyronimus et al., 2000). The oral administration of L. acidophilus NS1 to mice fed on high-fat diet was reported to increase the expression of sterol regulatory element-binding protein 2 (SREBP2) and LDL receptor (LDLR) in the liver, leading to a decrease in plasma cholesterol levels (Song et al., 2014). If proven, plasma cholesterol levels may be lowered using bile tolerant strains; tolerant strains e.g. L. reuteri, L. rhamnosus G5435, L. acidophilus 388, L. delbrueckii subsp. bulgaricus 11842, S. thermophilus 1342, B. lactis BB12, B. longum 1941, Lc. lactis R704 and S. thermophilus M5 in our study could be of benefit in the improvement of hyperlipidemia and hepatic lipid metabolism.

Our results for B. lactis (BB12) tolerance to gastrointestinal stresses are consistent with the findings of much previous research (Haschke et al., 1998; Vinderola and Reinheimer, 2003; Matsumoto et al., 2004; Vernazza et al., 2006; Li et al., 2010; Jungersen et al., 2014). B. longum and B. breve harboured the best tolerance to oxygen, bile and acid stresses among the bifidobacteria tested (Andriantsoanirina et al., 2013). This is critically relevant to our results for three Bifidobacterium species (breve, lactis and longum) for which survivability to pepsin and bile was >95% and > 60%, respectively. Also, these strains demonstrated excellent recovery (> 80%) under aerobic growth conditions (data not shown). These ‘characteristics’ are important for the survival of Bifidobacterium species in human GIT and could be advantageous for these strains as probiotics in food industry where high viability is warranted in the end product.

This study also set out to assess the antibiotic susceptibilities of LAB strains and the results obtained by disc diffusion and Etest® methods are shown in Tables 1 and 2. Table 3 demonstrates the overall summary for the survivability of these strains in gut correlated with their tolerances and immune cytokine influence (Ashraf et al., 2014a). Results obtained by disc diffusion assay could be ranked for an increased incidence of antibiotic tolerance in tested strains as: vancomycin> streptomycin > clindamycin> gentamicin. All strains appeared tolerant to vancomycin and susceptible to tetracycline, ampicillin, erythromycin, penicillin, imipenem and amoxyccillin/clavulanic acid. For streptomycin, strains were either tolerant or moderately sensitive. Also, gentamicin and clindamycin tolerances were profound.

Tolerance of LAB and probiotic strains to some antibiotics varied considerably depending on
breakpoints used for determining the MICs (Table 3). All the tested strains were sensitive to ampicillin and erythromycin, and highly tolerant to vancomycin. Majority were streptomycin tolerant except *L. salivarius* 5248, *B. breve* BB99, *Lc. lactis* R704, *L. plantarum* 276 and *L. rhamnosus* G5434. *L. reuteri*, *Lc. lactis*, *L. rhamnosus* G5434, *L. delbrueckii* subsp. *bulgaricus* 11842, *L. casei* 290 and *S. thermophilus* M5 were tolerant to gentamicin (≥8 µg/ml). Tetracycline tolerance was found in *L. rhamnosus* G5434 and *S. thermophilus* M5 (EFSA, 2005; CLSI, 2007; EFSA, 2008). All the strains were clindamycin sensitive except *L. delbrueckii* subsp. *bulgaricus* 11842 (CLSI, 2007; EFSA, 2008).

As indicated by tentative ECOFF values (Klare et al., 2007), *L. reuteri*, *L. rhamnosus* G5434, *L. acidophilus* 2401, *L. acidophilus* 388 and *L. delbrueckii* subsp. *bulgaricus* 11842 harboured non-wild type (NWT) tolerance to streptomycin and erythromycin (except *L. acidophilus* 388, WT for erythromycin). *L. paracasei* 292 and *L. rhamnosus* 5434 were also tolerant to erythromycin but were rather WT (Table 2). All tested strains were sensitive (WT) for ampicillin. *L. rhamnosus* G5434, *L. acidophilus* 2401, *L. acidophilus* 388 and *L. delbrueckii* subsp. *bulgaricus* 11842 were tolerant to gentamicin (NWT except *L. rhamnosus* G5434), *L. acidophilus* 2401, *L. acidophilus* 388 and *L. delbrueckii* subsp. *bulgaricus* 11842 got NWT tolerances for vancomycin while insufficient evidence was found for rest of the strains to report breakpoints. *L. paracasei* 292, *L. acidophilus* 2401 and *L. plantarum* 276 demonstrated tolerance to clindamycin from available MICs breakpoints, where *L. acidophilus* 2401 appeared NWT. Moreover, *L. rhamnosus* G5434 and *L. delbrueckii* subsp. *bulgaricus* 11842 showed NWT tolerances for tetracycline. According to species-specific MIC breakpoints (Danielsen and Wind, 2003), *L. rhamnosus* G5434 appeared tetracycline tolerant and none of the strains was tolerant to erythromycin. We identified tolerance to vancomycin and streptomycin common among bile and pepsin tolerant strains. The information is new and suggests there could be a similar mechanism of protection for these traits. Moreover, gentamicin and clindamycin tolerances were considerably frequent among the tested LAB strains. The tolerances to aminoglycosides (gentamicin, streptomycin) and glycopeptides (vancomycin), however, appeared intrinsic to the strains (Klein et al., 2000; Katla et al., 2001; Danielsen and Wind, 2003; Temmerman et al., 2003), it can be lost due to presence of conjugated bile salts (Charteris et al., 2000). The observed glycopeptide (vancomycin) tolerances in LAB are consistent with earlier observations (Charteris et al., 1998b; Blandino et al., 2008; Liu et al., 2009; Gueimonde et al., 2013; Gad et al., 2014). Interestingly, in our study MICs >256 µg/mL for vancomycin were common, which was consistent with earlier research (Salminen et al., 2006). Our results contradict with earlier research

Table 3: Survivability of LAB and probiotic strains in human gut with reference to their tolerances and immune responses

| Culture | BiN2 | PepN3 | AmbN4 | IL-2 | IL-4 | IL-10 | IL-12 | IFN-γ | TNF-α | TGF-β | %CD3+ | %CD4+ | %CD25+ | %CD3+ | %CD4+ | %CD25+ | T cells | T cells |
|-------------|------|-------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| LP292 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| 1S7246 | + | + | + | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| *L. reuteri* | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| *Le. lactis* | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| LG5434 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| LA2401 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| LA306 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| LB11842 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| ST1342 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| LC290 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| BB99 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| BB13 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| BL1941 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| LCR704 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| LP176 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| LB5434 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| ST53 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |

a appeared in the current study; *b* compiled from previous work (Ashraf et al., 2014ab); *c* 0.5% for 12h; *d* pH3 for 3h; according to microbiological breakpoints defined by EFSA (2008)

CM clindamycin, SM streptomycin, GM gentamicin, VA vancomycin, TC tetracycline

(Klare et al., 2007) that showed L. acidophilus were relatively more susceptible to streptomycin than other Lactobacillus species and members of several Lactobacillus species (including L. paracasei and L. plantarum and to some extent also L. rhamnosus and L. fermentum) appeared less susceptible to streptomycin.

In the current study, lactobacilli and bifidobacteria appeared to be clindamycin tolerant and the observed tolerances seemed to be intrinsic (Delgado et al., 2005; Gad et al., 2014). Moderate or variable activity of clindamycin against lactobacilli and bifidobacteria has been reported (Danielsen and Wind, 2003; Coppola et al., 2005; Masco et al., 2006), whereas others (Charteris et al., 1998a; Lim et al., 2002; Ammor et al., 2007; Botina et al., 2011; Gueimonde et al., 2013) have evidenced high sensitivity of lactobacilli to lincosamide.

In our study, bifidobacteria demonstrated tolerances to vancomycin, streptomycin and clindamycin that is consistent with others (Charteris et al., 1998b; Delgado et al., 2005; D’Aimmo et al., 2007). Aminoglycosides tolerance could be as a consequence of the lack of cytochrome-mediated drug transport (Mayrhofer et al., 2011). Tolerance phenotype for streptomycin in these strains has not been linked to the acquisition of specific antibiotic tolerance genes but rather it has been related to chromosomal mutations on the rpsL gene for ribosomal protein S12 in B. bifidum and B. breve (Kiwaki and Sato, 2009; Sato and Iino, 2010). Therefore, streptomycin tolerances essentially do not represent a potential risk of transferability in bifidobacteria. Moreover, Bifidobacterium species including B. animalis, B. breve, and B. longum, with QPS status have not been linked to any infective processes in healthy individuals yet (EFSA, 2013). Contrary to our results, tetracycline tolerance has been identified common in bifidobacteria (Scott et al., 2000; Masco et al., 2006; Aires et al., 2007; Ammor et al., 2007; Ammor et al., 2008; Gueimonde et al., 2010).

In the current study, few challenges were revealed in testing antimicrobial susceptibilities in LAB including difficulty in interpreting MIC values according to ECOFF for some species. The data on determinants of antibiotic tolerance using ECOFF values in bifidobacteria are relatively scarce, and limited to a fewer antibiotics including tetracycline and macrolide. ECOFF values determined for Lactobacillus group for erythromycin (0.5 or less) and gentamicin (4 or 8) were fairly lower (Klare et al., 2007) than proposed by others (Katla et al., 2001; Danielsen and Wind, 2003; EFSA, 2005; CLSI, 2007). Applying MIC breakpoints (Klare et al., 2007), erythromycin tolerances were observed in few LAB strains including L. rhamnosus G5434, did not coordinated with disc-diffusion results. In L. rhamnosus chromosomal mutation has been identified in 23S rRNA gene reducing the affinity of erythromycin for the ribosome, resulting into macrolide tolerance in strains (Flórez et al., 2007). ‘The transfer risk is considered to be very low for intrinsic, or acquired tolerance due to chromosomal mutation(s)’ (Klare et al., 2007; Gueimonde et al., 2013). Similarly, MIC breakpoints indicated by
SCAN (2003) and FEEDAP (2005) were lower for some antibiotics than initially proposed (Danielsen and Wind, 2003). The differences in interpretive criteria might be explained by differences in dosages, administration intervals, inoculum size, and test media.

Interesting phenomenon of substantial ingrowth in Etest® elliptical inhibition zones was found at few occasions during experiment (Fig. 2A-D). It appeared most common with clindamycin, in Lc. lactis, L. delbrueckii subsp. bulgaricus 11842, B. longum 1941 and B. lactis BB12. Lc. lactis showed similar tolerances with streptomycin and gentamicin as well. The present findings are consistent with other study, where L. gasseri and L. johnsonii showed similar tolerances against clindamycin and erythromycin (Mayrhofer et al., 2008). Danielsen and Wind (2003) observed isolated colonies within the inhibition zone of the Etest® in testing susceptibility of Lactobacillus spp. to imipenem and nitrofurantoin. It could be due to high frequency of spontaneous mutation in antibiotic genes observed fairly common in lactobacilli (Curragh and Collins, 1992; Danielsen and Wind, 2003). Our data in this case is novel illustration of phenomenon of persistence that likely shows regulated cellular heterogeneity. Survival of small fraction of cells after exposure to severe stress of antibiotics has been linked to transient state of slow or arrested growth of cells in the colony, which is different from resistance (Martins and Locke, 2014) and provide an ideal clue for LAB evolution of ‘tolerance’ to antibiotics. Though yet to prove, we believe that LAB populations have all adapted to the antibiotic regimen through tolerance and not resistance (Fridman et al., 2014).

Conclusion

Tolerances to gastric and intestinal transit are exhibited by the dairy-based strains of Lactobacillus, Bifidobacterium, Streptococcus, and Lactococcus spp. L. reuteri, L. rhamnosus G5435, L. acidophilus 388, L. delbrueckii subsp. bulgaricus 11842, S. thermophilus 1342, B. lactis BB12 and S. thermophilus M5 appeared highly tolerant to gastrointestinal stresses among the tested strains. Tolerances to tetracycline, penicillins (amoxicillin, ampicillin and penicillin), macrolides (erythromycin) and carbapenems (imipenem) generally did not occur among LAB. Tolerance to tetracycline and erythromycin was less frequent and appeared only in a few cases. In this regard LAB strains can be categorized in order of high to low frequency of tolerance as vancomycin> streptomycin> gentamicin> clindamycin> tetracycline. Although majority of tolerances are believed to be intrinsic, this will need to be further scrutinized to confirm a genetic basis but this was not part of the study. These strains previously demonstrated a substantial contribution in the induction of innate and adaptive defence mechanisms, can survive GIT and antimicrobial stresses, and could be helpful in replenishing gut microbiota after antibiotic therapy in the presence of residual antibiotic in the gut. In conclusion, the study provides a thorough understanding of gastrointestinal tolerances and antibiotic tolerance phenotype of LAB that value-add to their multiple applications in probiotic products. It also provides some support for the conceptual premise for therapeutic approaches such as treatment of Lactobacillus-related bacteraemia or antibiotic resistances in superbugs (e.g. Clostridium difficile cases, CDI cases) in hospital settings.

Acknowledgement

The research was funded by Victoria University-Australian Postgraduate Research Award. The authors thank Pavla Sedáčková, Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology Prague, Prague, Czech Republic, for her assistance. The support from Dr Osaana N. Donkor and Prof Todor Vasiljevic, Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, Australia is also appreciated.

References

Microbiology 50(4): 202-207.
EFSA. 2005. Opinion of the scientific panel on additives and products or substances used in animal feed (FEEDAP) on the updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance. EFSA Journal 223: 1-12.

