In vitro antimicrobial activity of Cymbopogon citratus (lemongrass) extracts against selected foodborne pathogens

Zulfä, Z.,* Chia, C. T. and Rukayadi, Y.

Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

Abstract
Microbial contamination in food system poses risk towards public health. The usage of synthetic and chemical preservatives to prevent the contamination has become a growing concern due to the presence of deleterious and harmful substances that can cause environment and health problems in prolonged exposure. Thus, there are needs to overcome this problem by using natural products as food preservatives. In this study, the antimicrobial activities of methanolic Cymbopogon citratus (lemongrass) extracts were tested against five foodborne pathogens, namely Bacillus cereus, Escherichia coli O157:H7, Klebsiella pneumoniae, Staphylococcus aureus and Candida albicans. The susceptibility test, minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) or minimum fungicidal concentration (MFC) were conducted using the broth microdilution techniques as described by Clinical and Laboratory Standard Institute (CLSI). C. citratus extract showed antimicrobial activity against all tested foodborne pathogens; B. cereus, E. coli O157:H7, K. pneumoniae, S. aureus and C. albicans with the inhibition zone of 12 mm, 7.5 mm, 11 mm, 10 mm and 9 mm, respectively. The MIC of C. citratus extract against B. cereus, E. coli O157:H7, K. pneumoniae, S. aureus and C. albicans was 0.08 mg/ml, 0.63 mg/ml, 0.04 mg/ml, 0.31 mg/ml, and 0.16 mg/ml, respectively, while the MBC or MFC was 1.25 mg/ml, 2.50 mg/ml, 2.50 mg/ml, 1.25 mg/ml and 1.25 mg/ml, respectively. Time–kill curves were determined to assess the correlation between MIC and bactericidal activity of C. citratus extract at concentrations ranging from 0× MIC to 4× MIC. The bactericidal endpoint for B. cereus, E. coli O157:H7, S. aureus and C. albicans was at 4× MIC after 2 h, 4× MIC after 2 h, 4× MIC after 30 min and 4× MIC after 4 h, respectively whereas K. pneumoniae was not completely killed after 4 hours of incubation at 4× MIC. The potent antimicrobial activity of C. citratus extract may support its usage as natural antimicrobial agent.

Keywords
Antimicrobial activity
Cymbopogon citratus
Foodborne pathogen
Lemongrass
Natural food preservative

Introduction
Microbial safety of food in terms of food contamination and spoilage by microorganisms has always been a concern to consumers and food industries. The implementation of preservation techniques in food system to prolong shelf life of food and control the growth of food-borne pathogens such as thermal treatment, water activity reduction, and synthetic antimicrobial agents has been associated with some drawbacks including changes in organoleptic characterization, nutrient loss and safety issues of using chemical additives (Negi, 2012). In addition, the frequent usages of antibiotics on food borne pathogens have led to the emergence of antibiotic-resistant microorganisms (Sánchez et al., 2010; Negi, 2012). The development of microbial resistance renders the common antimicrobial agents ineffective that leads to exploitation of other antimicrobial substances from other sources (Shin and Lim, 2004). Therefore, other alternatives of developing novel antimicrobial agent from natural sources, such as traditional medicinal plants, spices and herbs need to be explored (Rukayadi et al., 2008; Sánchez et al., 2010).

In Malaysia, there are several possible candidates for plant with antimicrobial activities and one of them is Cymbopogon citratus or commonly known as lemongrass. It is used widely as an essential ingredient in Asian cuisines due to the sharp lemon flavour. C. citratus, which belongs to the family of Gramineae, is commonly used in folk medicine for treatment of nervous and gastrointestinal disturbances (Bassolé et al., 2011). It is also used as antispasmodic, analgesic, anti-inflammatory, anti-pyretic, diuretic and sedative (de F. Melo et al., 2001; Bassolé et al., 2011;
Francisco et al., 2011). Francisco et al. (2011) also mentioned that C. citratus leaves extract has potent antioxidant activity due to its polyphenolic content and is a potential source of new anti-inflammatory drug. It was reported that C. citratus to have antibacterial, antifungal, antitumoral, anticancer and insecticide activities (Negrelle and Gomes, 2007). The antimicrobial activity of C. citratus against a series of microorganisms is due to the abundance of citral and essential oil components i.e Geranial, Myrcene, 6-Methylhept-5-en-22-one (Negrelle and Gomes, 2007; Calo et al., 2015). This led to suggestion that C. citratus may have antimicrobial activities against Bacillus cereus, Escherichia coli O157:H7, Klebsiella pneumoniae, Staphylococcus aureus and Candida albicans.

Therefore, the objective of this study is to evaluate the antimicrobial activity of Cymbopogon citratus (lemongrass) extract against the aforementioned food borne pathogens. The susceptibility of C. citratus extract in term of minimum inhibitory concentration (MIC) and minimum bactericidal or fungicidal concentration (MBC / MFC) will be determined. Time–kill curves will also be conducted to assess the correlation between MIC and bactericidal activity of C. citratus extract at different concentrations, ranging from 0× MIC to 4× MIC.

Materials and Methods

Plant material

Cymbopogon citratus was collected from Pasar Borong Selangor, Malaysia before deposited in Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia until further usage.

Preparation of Cymbopogon citratus extract

Extraction of C. citratus was done according to Rukayadi et al. (2008), with slight modification. A 100 g of dried C. citratus was grounded and extracted twice with 400 ml of 100% (v/v) methanol for 1 week at room temperature. The plant extract was filtered with Whatman filter paper No. 2 (Whatman International Ltd., Middlesex, England) and concentrated with a rotary vacuum evaporator (Heidolph VV2011, Schwabach, Germany) at 50°C, yielding methanolic extract. The methanolic extract was dissolved in 10% aqueous dimethylsulfoxide (DMSO) to obtain 100 mg/ml and the solution was further diluted to obtain 10 mg/ml stock solutions. A 10% DMSO did not kill microorganisms that being tested in this study.

Bacterial strains

Bacterial strains used for this study were obtained from the American Type Culture Collection (Rockville, MD, USA). Staphylococcus aureus ATCC 25922, Klebsiella pneumoniae ATCC 15692, Candida albicans ATCC 10231 were obtained from the American Type Culture Collection (Rockville, MD, USA). Staphylococcus aureus KCCM 11764 was obtained from Korean Culture Center of Microorganisms (Seoul, South Korea).

B. cereus, E. coli O157:H7, K. pneumoniae and S. aureus were grown on Mueller Hinton agar (MHA) (Difco, Franklin Lakes, NJ, USA), while C. albicans on Sabouraud Dextrose agar (SDA) (Difco, Franklin Lakes, NJ, USA), aerobically for 24 hours at 37°C, whereas inoculum cell suspension was prepared by propagating a single colony of each microbial species in 10 ml of Mueller Hinton broth (MHB) or Sabouraud Dextrose broth (SDB) at 37°C overnight with 200 rpm agitation. A 1 µl of microbial suspension was further diluted into the ratio of 1:10 (microbial suspension: MHB/SDB) to yield inoculum with 107 – 108 CFU/ml which was then compared with 0.5 Mc Farland.

Inoculum preparation

Bacillus cereus ATCC 10987, Escherichia coli O157:H7 ATCC 25922, Klebsiella pneumoniae ATCC 15692, Candida albicans ATCC 10231 were obtained from the American Type Culture Collection (Rockville, MD, USA). Staphylococcus aureus KCCM 11764 was obtained from Korean Culture Center of Microorganisms (Seoul, South Korea).

In vitro susceptibility test using disc-diffusion method

Methanolic extract of Cymbopogon citratus was screened for antimicrobial activity using the standard paper disc diffusion assay as described by Clinical and Laboratory Standards Institute (CLSI, 2003). The bacterial strains and C. albicans were streaked on MHA and SDA plates, respectively, with sterile cotton swabs. Sterile filter paper discs, 6 mm diameter, were loaded with 10 µl of 10 mg/ml (w/v) C. citratus extract. A 1 mg/ml of chlorhexidine (CHX) used as positive control while 10% DMSO as negative control. The plates were incubated at 37°C for 12 - 24 hours. Evidence of clear zone (including the disc diameter) was measured in millimeter (mm) unit.

Determination of minimum inhibitory concentrations (MIC) and minimum bactericidal or fungicidal concentration (MBC / MFC)

In vitro tests were performed in a 96-well microtiter plate to determine the MIC and MBC of C. citratus extract against B. cereus, E. coli O157:H7, K. pneumoniae, S. aureus and C. albicans using standard broth microdilution methods (CLSI, 2003) with an inoculum (107 – 108 CFU/ml). Briefly, a twofold dilution of C. citratus extract stock solution was mixed with the microorganisms in MHB or SDB. Column 12 of the microtiter plate contained the highest concentration of the extract, while column 3 contained the lowest concentration. Column 2 served as the positive control for all samples (MHB or SDB,
with inoculums), and column 1 as the negative control (MHB or SDB, without inoculum and antimicrobial agent). Microtiter plates were incubated aerobically at 37°C for 24 hours. The MIC was defined as the lowest concentration of antimicrobial agent that resulted in the complete inhibition of visible growth. MBC or MFC were determined for each microbial species by transferring the media from each well of microtiter plate showing no visible growth, and sub-culturing onto MHA plates. The plates were incubated at 37°C for 24 hours until growth was seen at positive control. MBC was defined as the corresponding concentrations required killing microorganisms completely.

Determination of time-kill curve

Time–kill assay was performed on each bacterial species in MHB medium and *Candida* strain in SDB medium according to Rukayadi *et al.* (2006) with modification. The *C. citratus* extract was diluted with the MHB or SDB medium containing prepared inoculum to obtain final concentrations of 0× MIC, 1× MIC, 2× MIC and 4× MIC for each microbial species. Cultures (1 ml of final volume) were incubated at 37°C with 200 rpm agitation. At predetermined time of 0, 0.5, 1, 2, and 4 hours, 100 µl aliquots were transferred into Eppendorf tubes and was serially diluted with 990 µl of 1% phosphate buffered saline (PBS). Then, 20 µl was pipetted and spread onto MHA or SDA plates and incubated at 37°C for 24 hours. The number of colonies appeared on the plates was counted and the number of colonies was determined and reported as CFU/ml. Assays were carried out in duplicate.

Results and Discussion

Cymbopogon citratus active compounds are known to possess various biological activities. It has been proven to have bactericidal, fungicidal, anti-oxidant, anti-inflammatory, antihypertensive, antinociceptive, anti-obesity, and anxiolytic (Tzotzakis and Economakis, 2007; Moore-Neibel *et al.*, 2012; Olorunnisola *et al.*, 2014). The antimicrobial activity of *C. citratus* extracts were evaluated against five species of foodborne pathogens namely *B. cereus* ATCC 10987, *E.coli* O157: H7 ATCC 25922, *K. pneumoniae* ATCC 15692, *S. aureus* KCCM 11764, and *C. albicans* ATCC 10231. Results analysed based on the inhibition zone, minimum inhibitory concentration (MIC) and minimum bactericidal / fungicidal concentration (MBC / MFC).

In disc diffusion test, the presence of clear zone around the paper disc is denoted as the inhibition of growth of the microorganism (Jun *et al.*, 2013). Table 1 shows the potentiality of *C. citratus* to inhibit all tested foodborne pathogens with different level of susceptibility based on the diameter of clear zone (mm); the wider the diameter of the clear zone means more susceptible or have a higher susceptibility. Bacteria species; *B. cereus* (12.00 mm), *K. pneumoniae* (11.00 mm), *S. aureus* (10.00 mm) have higher susceptibility compared to fungal species; *C. albicans* (9.00 mm) except for *E. coli* O157:H7 (7.50 mm). It could be due to the resistance of the *E. coli* towards the antimicrobial components in *C. citratus* extracts. *E. coli* O157:H7 is a Gram-negative bacterium, which had an outer layer on the cell wall that is made up of lipopolysaccharides. Therefore, the cell is protected under the lipopolysaccharide layer and is more resistant to the antimicrobial agents (Bin *et al.*, 2007).

MIC is defined as the minimum concentration of the antimicrobial needed to inhibit at least 99% of visible growth of the microorganisms, whereas MBC or MFC is the minimum of the antimicrobials needed to kill at least 99% of growth. Table 1 summarizes the MIC, MBC or MFC value of each of the microorganisms. *E. coli* O157:H7 has the strongest resistance to the antimicrobials as the MIC and MBC needed by *C. citrus* extracts was highest; 0.63 mg/ml and 2.50 mg/ml, respectively. On the other hand, *K. pneumoniae* was found to be easy to get inhibited (MIC: 0.04 mg/ml) but extremely difficult to be killed (MBC: 2.50 mg/ml). It shows that *K. pneumoniae* possesses a specific self-protective mechanism to protect them from being killed after they got inhibited. Zainol *et al.*, (2003) discussed that there

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Inhibition zone (mm)</th>
<th>MIC (mg/ml)</th>
<th>MBC / MFC (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus</td>
<td>12.00 ± 1.41</td>
<td>0.08</td>
<td>1.25</td>
</tr>
<tr>
<td>Escherichia coli O157:H7</td>
<td>7.50 ± 0.71</td>
<td>0.83</td>
<td>2.50</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>11.00 ± 1.41</td>
<td>0.04</td>
<td>2.50</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>10.00 ± 0.00</td>
<td>0.31</td>
<td>1.25</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>9.00 ± 1.41</td>
<td>0.16</td>
<td>1.25</td>
</tr>
</tbody>
</table>
are some species which are easier to get inhibited but hard to be killed due to their adaptive ability.

Figure 1(a) to 1(e) showed the time-kill curve for each species of tested foodborne pathogens. The bactericidal endpoints for *B. cereus*, *E. coli* O157:H7, *S. aureus* and *C. albicans* were reached at 4× MIC after 2 hours, 4× MIC after 2 hours, 4× MIC after 30 minutes and 4× MIC after 4 hours of incubation periods, respectively. While, no bactericidal endpoints was found for *K. pneumoniae*, but the growth were decreased until 1 log, 2 log and 3 log CFU/ml reduction after being treated with *C. citratus* extract for 4 hours at 1× MIC, 2× MIC and 4× MIC, respectively. The reduction of *B. cereus*, *E. coli* O157:H7, *S. aureus* and *C. albicans* in the CFU/ml were ≥ 3 log units (99.9%) at *C. citratus* concentration of 2× MIC, 2× MIC, 4× MIC and 1× MIC, respectively. The strongest bacteriostatic and fungiostatic activity was found on *B. cereus* and *C. albicans* which were at 0.16 mg/ml at 2× MIC and 1× MIC, respectively. These data demonstrated that the killing activity was dependent on the concentration of *C. citratus* extract and the types of microorganisms tested.

According to Bhoj et al. (2011) and Adegbegi et al. (2012), *C. citratus* contains active components like alkaloids, tannis, flavanoids, terpenes and phenolic compounds. Phenols and flavonoids
are widely been reported can caused membrane disruption while alkaloids are thought to inhibit the growth of microorganisms by affecting their genetic materials (Cowan, 1999). Besides that, the essential oils in many plant extracts was also reported to possess hydrophobic characteristic that enable them to partition in the lipid component of bacterial membrane, rendering them permeable and leading to leakage of the cell contents (Burt, 2004; Vimol et al., 2012).

Conclusions

In conclusion, the potential of *Cymbopogon citratus* extract to be used as natural antimicrobials agent is recommendable as antimicrobial activity against *Bacillus cereus*, *Klebsiella pneumoniae*, *Staphylococcus aureus*, *Escherichia coli* O157:H7 and *Candida albicans* were demonstrated. Further study on the active constituents and possible inhibitory mechanisms of *C. citratus* extract would be interesting. The development of natural plant extracts and active compounds would be a great alternative of new food preservatives to the food industries.

Acknowledgements

This work was supported by RUGS initiative 4 (RUGS 4) – UPM to Yaya Rukayadi under the project number: 02-05-11-1586RU (2011).

References

