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Abstract

This study investigated the drying kinetic of pumpkin under different drying temperatures (50, 
60, 70 and 80°C), samples thickness (3, 4, 5 and 7mm), air velocity (1.2m/s) and relative 
humidity (40 - 50%). Kinetic models were developed using semi-theoretical thin layer models 
and multi-layer feed-forward artificial neural network (ANN) method. The Hii et al. (2009) 
semi-theoretical model was found to be the most suitable thin layer model while two hidden 
layers with 20 neurons was the best for the ANN method. The selections were based on the 
statistical indicators of coefficient of determination (R2), root mean square error (RMSE) and 
sum of squares error (SSE). Results indicated that the ANN demonstrated better prediction 
than those of the theoretical models with R2, RMSE and SSE values of 0.992, 0.036 and 0.207 
as compared to the Hii et al. (2009) model values of 0.902, 0.088 and 1.734 respectively. The 
validation result also showed good agreement between the predicted values obtained from 
the ANN model and the experimental moisture ratio data. This indicates that an ANN can 
effectively describe the drying process of pumpkin.

Introduction

The food, agro-allied, pharmaceutical and 
chemical industries are becoming increasingly 
interested in the use of fruits and vegetables, 
containing high amount of carotenoids and other 
antioxidants, as ingredients either wholly or partly in 
the production of food supplements, food products, 
cosmetics and drugs. Pumpkin (Cucurbita moschata) 
has been widely used as an ingredient in a number 
of food, pharmaceutical and bio-product production 
processes. It is rich in carotenes, minerals and pectin 
(Krokida et al., 2003). The chemical composition 
is also rich in antioxidants and vitamins, which 
makes pumpkin a source of good health and general 
utilisation (Murkovic et al., 2005). However, due to 
its delicate nature, pumpkin requires more effective 
preservation methods to increase its shelf life 
(Doymaz, 2007).

Drying is one of the oldest methods of food 
and agricultural products preservation (Alonge and 
Onwude, 2013) which keeps the food in a stable 
and safe condition, thereby extending shelf life and 
maintaining quality attributes (Duan et al., 2010; 
Mujumdar and Law, 2010). For most industrial 
applications, convectional hot air drying is widely 

applied. Hot air drying involves the uniform 
distribution of hot air on a material undergoing 
dehydration and can negatively affect important 
properties of the food products, such as the nutritional 
properties and phytochemical properties. Thus, 
the determination of suitable drying model, drying 
conditions and the determination of the optimum 
operating parameters are indispensable in achieving 
great quality along with minimum product cost with 
maximum yield (Rodríguez et al., 2014).

Artificial neural networks (ANN) are 
computational tools, which are also seen as a complex 
tools for complex systems and dynamic modelling. 
They are inspired by the biological neural system as 
a useful statistical tool for nonparametric regression. 
One advantage of  ANN over conventional models 
(such as the empirical model) is the increased 
flexibility, reduced assumptions, online non-
destructive measurement and tolerance of incomplete 
or noisy data (Omid et al., 2009; Rodríguez et al., 
2014). The structure of a neural network is in form 
of interconnected layers. Haykin (1999) classified 
an ANN in three groups of structures based on their 
connection. These are the single layer feedforward 
network, the multi-layer feedforward network and 
the recurrent network. 
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Multi-layer feed forward network is widely 
used in the modelling of agricultural and food 
systems. This class of feedforward neural networks 
has an input layer (n), an output layer (m) and one 
or more hidden layers (h) (Omid et al., 2009). The 
number of neurons in the input and output layers is 
representative of the amount of independent variables 
(input) and dependent variables (output) respectively. 
A multilayer ANN model with three inputs 
(concentration of osmotic solution, temperature, and 
contact time) was used to predict the outputs (drying 
time, colour, texture, rehydration ratio, and hardness) 
of the osmo-convective drying of blueberries (Chen 
et al., 2001). Similar multilayer models have been 
reported for the prediction of the physical properties 
of osmotically dehydrated pumpkin (Zenoozian et 
al., 2007). 

Many thin layer drying models have been 
proposed to describe the drying process of fruits 
and vegetables (Onwude et al., 2016a). The widely 
applied categories of these models are the theoretical, 
semi-theoretical and empirical models (Akpinar, 
2006; Doymaz, 2007; Erbay and Icier, 2010; Guiné et 
al., 2011). Amongst these 3, the semi theoretical and 
theoretical models have been reported to be the most 
applicable. These categories of models are generally 
developed based on assumptions of geometry, mass 
diffusivity and conductivity of food products, and 
some do not always give accurate results (Ozdemir 
and Devres, 2000; Erbay and Icier, 2010; Onwude et 
al., 2016a). 

A great deal of research have been reported in 
literatures concerning the thin layer modelling of the 
drying process of different agricultural, biological 
and food products such as kiwifruits (Mohammadi 
et al., 2008; Darıcı and Şen, 2015), apple (Zarein 
et al., 2013), red pepper ( Akpinar et al., 2003; Di 
and Crapiste, 2008; Vega-Gálvez et al., 2008) and 
pumpkin ( Doymaz, 2007; Hashim et al., 2014; 
Onwude et al., 2016b). However, there are less 
information on new modelling approach such as 
Artificial Neural Network (ANN) in describing 
the drying behaviour or ways to analyse the drying 
experimental data of fruits and vegetables, in order to 
help advance the science. In general, ANN modelling 
can be used as a potential alternative to empirical and 
theoretical thin layer models in the drying of fruits 
and vegetables. ANN has been successfully applied 
in modelling and optimizing the drying processes of 
fruits and vegetables such as tomato (Movagharnejad 
and Nikzad, 2007), carrot (Erenturk and Erenturk, 
2007), eggplant (Bahmani et al., 2015), onion 
(Jafari et al., 2015) and pepper (Jafari et al., 2016). 
Consequently, ANN techniques can be applied in 

predicting the drying kinetics of pumpkin during 
hot air drying. It can help in the evaluation of drying 
parameters in real conditions, the optimization of 
processing condition and the increase on the overall 
drying efficiency. However, there is no report on 
the application of ANN technique in modelling the 
drying kinetics of pumpkin (Cucurbita moschata) in 
a convective hot air dryer.

The objective of this study is to evaluate the 
feasibility of applying multilayer ANN modelling 
as a non-destructive technique in describing the 
drying behaviour of pumpkin under different drying 
conditions and to compare the results of an ANN 
model with thin layer mathematical models.

 Materials and Methods

Sample preparation
The Cucurbita moschata variety of pumpkin 

fruits were purchased locally from wholesalers in 
Malaysia and stored in a cold room at a temperature 
of 10 ± 1°C during the entire drying experiments 
which lasted for 14 days. The samples were selected 
based on same physical appearance (size, colour 
and shape). A total of 48 samples of pumpkin fruits 
were used in the experiments. The ANSI/ASAE oven 
method was used to determine the average initial 
moisture content of the samples. The average initial 
moisture content was found to be 6.2 (dry basis).

Drying experiments
Before each drying experiments, the pumpkin 

samples were selected, hand peeled, washed in running 
water and the pulp sliced into different dimensions. 
Subsequently, several drying experiments were 
conducted at constant temperatures of 50, 60, 70 and 
80°C and an air velocity of 1.2 m/s. The sample slice 
thickness of 3, 4, 5 and 7 mm (uniform width of 20 mm 
and length 30 mm) was used and the relative humidity 
values was within the range 40 to 50% throughout 
the experiments. A total of 12 experimental runs were 
carried out with three replications and the average 
values were used for the moisture ratio estimation. 
In every experiment, the drying process continued 
until there was no further change in the masses of 
two consecutive measurements.

Drying equipment
A locally designed and fabricated convective 

dryer, fully automated, was used for the drying 
experiments (Figure 1). Details of the dryer used has 
been reported by Onwude et al. (2016b). 

Figure 1. Schematics of the hot air oven (1= system unit; 2= 
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control panel; 3= load cell; 4= dryer fan; 5= dryer tray; 6= 
drying chamber; 7= dryer support; 8= dryer switch button; 9=air 
velocity switch button)

Mathematical modelling
Selected thin layer models (Page, Modified 

page, Henderson and Pabis, Two-term and Hii et al. 
models) were fitted to the experimental data obtained 
for the four different temperatures, sample thickness 
and drying time in the form of the moisture ratio 
(MR) versus time (Hii et al., 2009; Vega-Galvez et 
al., 2009; Chayjan et al., 2013; Chen et al., 2013; 
ANSI/ASAE 2014; Hashim et al., 2014):

Artificial neural network (ANN) 
The goodness of fit of the thin layer models 

and the ANN models to the experimental data was 
evaluated using the coefficient of determination 
(R2) , the sum of squares error (SSE) and root mean 
square error (RMSE) such that the higher the value 
of R2 and the lower the SSE and RMSE value, the 
better was the goodness of fit (Rayaguru and Routray, 
2012; Tahmasebi et al., 2014). They are computed 
mathematically as:

R2 = 		  (1)

SSE is also known as the sum of squares error, 
which measures the differences between each 
observation and the predicted data from the fit. It is 
the total deviation of the response values from the 
fit to the response values. Mathematically, it can be 
written as:

 SSE = 	 		  (2)

RMSE =  		  (3)

where MRpre,i is the ith predicted moisture ratio, 
MRexp,i is the ith experimental moisture ratio, 
while N is number of observations. Also, xiobs is the 
observed data value and xipre is the predicted value 
from the fit, wi is the weighting applied to each data 
point, usually wi = 1.

A multi-layer feed forward network structure 
with three input parameters (temperature, thickness 
and time), one output parameter (moisture ratio) and 
1-2 hidden layers was trained using the moisture 
ratio data. A back-propagation algorithm was used 
in training of the model and a hyperbolic-tang 
transfer function was used in all cases. The thin layer 
experimental data was used for the neural network 
training. The input and output data was divided 
into two parts: 70% of the data for training and the 
remaining 30% of the data for testing and validation, 
which was randomly selected. The chosen hidden 
layer architectures were [4], [8], [10], [4, 4], [8, 8] 
and a [10, 10] matrix, where [8, 8] represents the two 
hidden layers with eight neurons each (Figure 2).

Figure 2. The selected multi-layer neural network scheme

The neural network toolbox of Matlab software 
version R2014a was used to train the ANN network, 
the number of hidden layers and neurons, the 
learning rule, the learning coefficient, the random 
number seed and the transfer/activation function. The 
performance of the various ANN configurations was 
compared using statistical parameters such as R2, SSE 
and RMSE. The performance of the optimal neural 
network was then validated using a small data set 
not used in the training procedure. The optimisation 
algorithm used for training was the Levenberg-
Marquardt Backpropagation Transfer function choice 
as given in Equation 4:
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Logarithmic sigmoid, logsig (w, x) 
= 1/(1 + e^(-w.x))				    (4)

where x is the input vector and w is the adjustable 
weight vector. As such, the prediction ability 
was tested. Thereafter, the network weights and 
coefficients associated with the optimal ANN model 
were simulated so that it could be used for future 
predictions without the need of the neural network 
tools for the specific drying conditions.

Results and Discussion

Table 1 presents the results of fitting the selected 
thin layer models against the experimental data. 
From the statistical results, it can be seen that the 
best model, which has the highest R2 and lowest SSE 
and RMSE values, is the Hii et al. model. This model 
has been reported as the best thin layer model for 
predicting the drying kinetics of pumpkin (Onwude 
et al., 2015; Onwude et al., 2016b). 

Table 1 Statistical results of thin layer theoretical models
Models SSE RMSE R2

Page Model* 1.762 0.0885 0.902
Modified Page 1.859 0.0909 0.896
Henderson and Pabis 1.851 0.0907 0.897
Two Term Model 1.774 0.0890 0.901
Hii et al. Model* 1.734 0.0884 0.902
*models with best fitting results

Furthermore, the statistical results associated 
with training, validation and testing of the multi-
layer feed forward network structure of pumpkin 
drying experimental data are shown in Table 2. 
During training, the data sets were used to evaluate 
the optimum number of hidden layers and neurons 
for multi-layer neural network modelling in order 
to determine the best predictive power. The results 
showed that the architecture with 2 hidden layers and 
20 neurons [10, 10], gave the best results as compared 
to those of 1 hidden layer (4, 8 and 10 neurons) and 1 
hidden layers (8 and 16 neurons) respectively.

 In addition, the networks were found to be 

susceptible to the number of neurons in their hidden 
layers. Consequently, fewer neurons led to under 
fitting, while too many neurons contributed to over 
fitting. From the results of Table 1 and Table 2, it can 
be seen that the ANN model is more accurate than 
the theoretical thin layer models with R2, RMSE and 
SSE values of 0.992, 0.036 and 0.207 respectively 
as compared to those of the Hii et al. model (R2 
= 0.902, RMSE = 0.0884 and SSE = 1.734). 
Mokhtarian et al. (2014) reported that the Newton 
model gave better results compared with other thin 
layer models during the drying of pumpkin cubes. 
However, results of modelling using ANN showed 
that logsig activation function with 18 neurons in 
first hidden layer performed better in predicting the 
MR of pumpkin during hot air drying. Similar results 
on the application of ANN in predicting the drying 
kinetics of pumpkin (Cucurbita pepo) during osmotic 
dehydration, showed that logsig activation function 
with 2 hidden layers and 30 neurons adequately 
predicted the moisture changes (Zenoozian et al., 
2007). ANN with 2 hidden layers have also been 
successful in predicting the drying behaviour of 
other fruits and vegetables. Nadian et al. (2015) 
reported that a multi-layered perceptron (MLP) ANN 
algorithm with 2 hidden layers and 35 neurons were 
best in predicting the moisture ratio of apple slices 
during hot air drying. Ghaderi et al. (2012) compared 
the performance of thin layer models with ANN 
model in predicting the drying kinetics of mushroom 
during microwave-vacuum drying. They concluded 
that the ANN model with 2 hidden layers and 30 
neurons successfully predicted the drying kinetics 
of mushroom. The results of their comparison with 
thin layer models showed that the artificial neural 
networks performed better than mathematical 
models in predicting moisture ratio and drying rate of 
mushroom slices. Similar results on the performance 
of ANN models over thin layer models in predicting 
the moisture ration and drying rate of other fruits 
and vegetables have been reported such as bergamot 
(Sharifi et al., 2011), eggplant (Bahmani et al., 2015), 
onion (Jafari et al., 2015) and pepper (Jafari et al., 
2016).

Table 2 Statistical results for multi-layer neural network models
No.hidden 

layers
No. 

Neurons
Training Validation Test

SSE RMSE R2 SSE RMSE R2 SSE RMSE R2

1 4 0.804 0.071 0.970 0.352 0.102 0.928 0.108 0.056 0.979
1 8 0.821 0.072 0.967 0.123 0.060 0.972 0.147 0.066 0.981
1 10 1.025 0.081 0.959 0.310 0.096 0.965 0.078 0.048 0.985

2 4, 4 0.900 0.076 0.967 0.345 0.101 0.927 0.131 0.062 0.962
2 8, 8 0.335 0.046 0.986 0.142 0.064 0.976 0.052 0.040 0.993
2* 10, 10* 0.207 0.036 0.992 0.063 0.043 0.991 0.184 0.074 0.999
*best model based on statistical indicator
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Figure 3. Predicted vs experimental data of pumpkin (Cucurbita 
moschata) using a multi-layer neural network (2 hidden layers, 
20 neurons)

Figure 3(a-d) shows the correlation between the 
experimental and predicted values by an ANN neural 
network. The values of the training, validation, 
testing and overall dataset fitted along a linear line. 
The results demonstrated good agreement between 
the predicted and the experimental values of moisture 
ratio. Thus, the ANN model was able to accurately 
predict the moisture ratio of pumpkin during 
convective hot air drying.

Conclusion

In this study, the feasibility of using artificial 
neural network as a modelling tool for predicting 
the drying process of pumpkin was investigated. The 
results suggest that the ANN model provides better 
generalisation of the drying process as compared to the 
theoretical models. Consequently, the ANN model is 
able to describe a wider range of drying experiments 
while the application of theoretical models is limited 
to specific experimental conditions in most cases. 
The ANN model is also able to give better results 
even when the experimental conditions and data set 
are altered by the addition of new experimental data. 
Therefore, the ANN model may be considered as a 
suitable alternative modelling method in describing 
the drying behaviour of pumpkin. Thus, the artificial 
neural networks can be successfully applied for the 
online monitoring and control of industrial drying 
processes and operations. However, further study 
is required to ascertain the suitable of ANN in 
describing the heat and mass transfer process during 
drying.
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