**Bioactive lipids in milk**

Dhankhar, J., Sharma, R. and Indumathi, K. P.  

*Bioactive lipids in milk*  

Abstract  

Milk fat represents a significant source of nutrition and energy for humans stimulating extensive investigations dominating recent health concerns even at micro levels by bio-scientists. Despite its longstanding association with health, the current researches are directed at number of beneficial components like bioactive lipids and fat soluble vitamins. Bioactive lipids in milk include triglycerides, diglycerides, monoglycerides associated with beneficial fatty acids like short chain, medium chain, conjugated linoleic acid (CLA), and polyunsaturated fatty acids. These can prove as potential diagnostic tools for reckoning chronic diseases like cancers, diabetes, inflammation, and CVD (Cardiovascular disease). The minor lipid components like phospholipids, sterols, ether lipids also carry biological and health promoting activities. Butyric acid plays important role in controlling cell growth, differentiation and preventing tumor genesis in colon cells. Fat-soluble vitamins (A and E) in milk fat are involved in antioxidant and tumor suppressing activities. CLA has been shown to play important role in inhibition of carcinogenesis and atherosclerosis as well as immune stimulation in different studies on animals. Furthermore, phospholipids like sphingolipids and their active metabolites, ceramides and sphingosines had exhibited effective antibacterial properties, anti carcinogenic and immune stimulation properties. The current information on bioactive lipid components in milk lipids in promoting health and preventing disease has been summarized in the paper.

Introduction  

Milk and dairy products are important sources of fatty acids (FA) in the human diet (Haug et al., 2007; Mills et al., 2011), contributing to between 18% and 24% total fat, 30% and 40% total saturated fatty acid (SFA) and 20% and 25% total trans fatty acid intake (Henderson et al., 2003). In the preceding decades, nutritionists and scientists have cautioned against high milk consumption as the high concentrations of saturated fatty acids (SFA) in milk fat had been reported to negatively impact to human health, especially with increased risk of cardiovascular disease. Nevertheless, latest reviews and epidemiological studies revealed that milk has a characteristic composition with short, medium chain, polyunsaturated, branched fatty acid and conjugated linoleic acid (CLA) that play important role in regulating biological activities. This increase in the knowledge that milk lipid components confer biological activities besides health beneficial properties, further boosted research in dairy industry for formulating the dairy products with incorporation of bioactive lipid components. The upsurge in the interest in these bioactive components has led to the different strategies for their incorporation in foods, by either isolating individual components as such or by enriching bioactive lipid component as a whole in the food products that have resultanty filipled the innovations and ramifications in the range of nutraceuticals available commercially. A deeper knowledge on the regulation of the metabolic pathways of these bioactive lipids and their potential positive effect in human health will be essential in the formulation of these products with added value.

In milk, lipids are mainly present in globules as an oil-in-water emulsion (MacGibbon and Taylor, 2006). The milk fat consists mainly of triglycerides, approximately 98%, while other milk lipids are diacylglycerol (about 2% of the lipid fraction), cholesterol (less than 0.5%), phospholipids (about 1%) and free fatty acids (FFA) about 0.1% (Jensen and Newburg, 1995). In addition, there are trace amounts of ether lipids, hydrocarbons, fat soluble vitamins, flavour compounds and compounds introduced by the feed (Parodi, 2008).

**Triglycerides (TAG)**

The triglyceride is the major component of milk fat, esterified with different fatty acids. Milk fat
contains TAG with different carbon numbers varying from C26 to C54 (Fontecha et al., 2005) based upon total number of carbon atoms distributed across the whole of structure of TAG molecule (i.e. the sum of the carbon atoms of the three acyl radicals). The range of variation of carbon number is species specific with greater amount of medium-chain TAG (C26-C36) in goat and sheep’s milk than cow’s milk and both species also exhibit lower proportion of long chain TAGs (C46-C54) (Goudjil et al., 2003). The TAGs which are composed of saturated and short chain fatty acids with 6-10 carbons generally exhibit lower melting point in synergy with less energy dense as compared to TAGs with long chain fatty acids. These variations in physical and chemical properties affect the metabolism and absorption of TAGs. The esterification of fatty acids at three positions of TAG molecule is non random (MacGibbon and Taylor, 2006) with short chain acids butyric (4:0) and caproic (6:0) are esterified to the sn-3 position and the C16:0 occupies the sn-2 position.

The hydrolysis of triacylglycerols in milk, on consumption occurs with the help of lingual lipases in the mouth and by both lingual and gastric lipase in the stomach (Parodi, 2004). The lipases selectively hydrolyse sn-3 position fatty acids, and thus release the shorter fatty acids. The short chain fatty acids C4:0-10:0 are absorbed through the stomach wall in decreasing quantities with the increase in molecular weight, enter the portal vein, and are transported to the liver where they are oxidised. The 25-40% of TAG digestion takes place in stomach (Jensen, 2002).

**Milk fatty acid composition**

### Saturated fatty acids

In physiological terms, classification of saturated fatty acids can be done as: short-chain (up to C-4:0), medium-chain (up to C-6:0-10:0), and long-chain (C-12:0 onwards) fatty acids, although different classifications are used in other contexts. On an average, C4:0-10:0 account for 10.6-12.8 weight % of total fatty acids in milk fat (Precht, 1990; Jensen and Newburg, 1995). The major five fatty acids constituting almost 70-77% of the total fatty acid composition in milk are long chain fatty acids (C18:1, C16:0, C10:0, C14:0, and C18:0). The milk fat of different species exhibits characteristic fatty acid compositions. The content of short chain fatty acids: butyric (C4:0), caproic (C6:0), caprylic (C8:0) and capric (C10:0) acids are 2-3 fold higher in sheep than in goat’s milk.

The digestibility of short and medium chain fatty acids is quite high. Further, these play crucial role in reduction of cholesterol levels in serum and liver, as well as triacylglycerols levels (Frede et al., 1990). They are transferred directly from the intestine to the portal circulation on hydrolysis from parent TAG without again undergoing resynthesis of triacylglycerols. Thus, they are utilised for instant energy production and are not available for adipose formation. Epidemiological studies have shown that butyric acid (4:0) is an antineoplastic agent (Parodi, 1996; Parodi, 1997). Butyric acid is reported to (i) prevent the proliferation (ii) to induce differentiation (in vitro) of a variety of neoplastic cells (Prasad, 1980; Chen et al., 1994) and (iii) to retard the tumorigenesis in mice (Pouillart et al., 1991). Most studies have shown synergism between butyrate and other dietary components and common drugs in decreasing cancer cell growth (Parodi, 2008). Butyric acid modulates the expression of oncogenes and suppressor genes (Rabizadeh et al., 1993). The range of butyric acid in milk fat is approx. 7.5-13.0 mole % or 3.42 weight % related to fat (Molkentin and Precht, 1997). In animal and in vitro studies, the short and medium chain fatty acids (C4:0, C6:0, C8:0 and C10:0) had been reported to exert antibacterial and antiviral activities (Neyts et al., 2000). The long-chain fatty acids 12:0-16:0 in milk fat constitute 42-44 wt % of total fatty acids (Precht, 1990; Jensen and Newburg, 1995). These long chain fatty acids are associated with increment in level of total and LDL cholesterol in plasma, which is responsible for increased risk of CVDs and atherosclerosis (Mattson and Grundy, 1985; Dupont et al., 1991; ZoEllner and Tato, 1992; Zock, 1995). However, stearic acid (C18:0) with an average concentration in milk fat of 11% has a neutral effect on lipoprotein cholesterol levels (Hegsted et al., 1965; Bonanome and Grundy, 1988; Grundy and Denke, 1990). Animal studies demonstrated that butyric acid in milk fat induce uncoupling protein -1 expression in brown adipose tissue, which was associated with suppression of diet-induced obesity and improvement in insulin sensitivity (Parodi, 2016).

### Monounsaturated fatty acids

The major monounsaturated fatty acid present in milk fat is oleic acid and is responsible for 20.1-20.8 wt % of total fatty acids on average (Precht, 1990; Jensen and Newburg, 1995). Most scientific studies pointed out that diets with higher oleic acid mostly decrease the level of LDL-cholesterol as compared to diets containing less oleic acid, without affecting HDL-cholesterol levels (Mattson and Grundy, 1985; Mensink and Katan, 1989; Berry et al., 1991; Chan et al., 1991; Mata et al., 1992; Valsta et al., 1992;
Katan et al., 1994; Zock, 1995). Thus, oleic acid can be safely regarded as antiatherogenic.

**Polyunsaturated fatty acids**

Milk fat also contains polyunsaturated fatty acids (PUFAs) like linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3) almost to the level of 1.2-2.0 wt % and 0.5-0.7 wt % of total fatty acids, respectively (Precht, 1990; Jensen and Newburg, 1995; Precht and Molkentin, 1997). They perform many diverse functions being part of essential fatty acids in human metabolism and are conducive for physiological aberrations on deficiency (Kinsella et al., 1990; Horrobin, 1997).

Furthermore, evidence from many studies have shown that linoleic acid decreases the level of LDL-cholesterol but concurrently may also cause a slight decrease of HDL-cholesterol levels (Mattson and Grundy, 1985; Beynen and Katan, 1989; Mensink and Katan, 1989; Grundy and Denke, 1990; Zoëllner and Tato, 1992; Katan et al., 1994). Most of the studies have concluded antiatherogenic effect of PUFA.

Although, more recent reviews have reported that PUFAs present in the triacylglycerol and cholesterol ester moieties of LDLS may be responsible for atherogenesis. PUFAs contain unsaturated bonds which get oxidized to form cytotoxic compounds in the LDLS (ox-LDLS). The LDLS on oxidation result in formation of atherosclerotic plaques in the blood vessels (Witztum and Steinberg, 1991; Holvoet and Collen, 1994; Parthasarathy and Santanam, 1994). The concentration of PUFA is remarkably high in cells of brain and retina, where it is responsible for proper mental functioning and visual acuity.

Moreover, epidemiological studies have suggested that consumption of n-6 fatty may promote tumor formation, whereas some n-3 PUFAs have been correlated with antitumorigenic effects (Cohen et al., 1986; Pariza, 1988; Reddy, 1994). Furthermore, PUFAs exert immunomodulatory effect by resulting in formation of anti-inflammatory cytokines ((Pfeuffer, 1997).

**Conjugated linoleic acids**

Conjugated linoleic acid (CLA) consists of a mixture of positional and geometric isomer of linoleic acid with conjugated double bond system (Chin et al., 1992; Precht and Molkentin, 1997). Rumenic acid (RA) or cis-9, trans-11 is the predominant isomer, out of the 20 main isomers found in dairy products (Kramer et al., 1994). CLA is synthesized as intermediate of polyunsaturated fatty acids (PUFAs), specifically linoleic (18:2, n-6) and linolenic acids (18:3n-3) by microflora in rumen (Palmquist et al., 2005; Luna et al., 2005). The milk fat content of CLA varies among different species, with sheep’s milk having the highest content of CLA as well as that of its precursor vaccenic acid (t-11;C18:1). The content of CLA in milk fat varies species wise in the decreasing order with sheep followed by cow and goat 1.2, 0.7 and 0.6 % of total fatty acids, respectively. Several prospective studies suggested that CLA intake is related to down regulation of fat synthesis and lipogenic enzymes for lipid synthesis. CLA supplements inhibited milk fat synthesis and improved energy mass balance in studies carried out with lactating goats (Baldin et al., 2014). Vyas et al. (2013) reported that infusion of CLA resulted in depression in fatty acid synthesis in lactating cows. Abdominal infusion of CLA reduced de novo synthesized fatty acid (DNFA) to level of 50% concentration, whereas DNFA tended to be greater with Butter fat infusion (Parodi, 2016). CLA-induced milk fat depression in lactating ewes involved the sterol regulatory element-binding protein transcription factor family and a coordinated down regulation in transcript abundance for lipogenic enzymes involved in mammary lipid synthesis(Hussein et al., 2013).

The current rise in the interest of CLAs started with the studies suggesting association of ant carcinogenic and anti-neoplastic activity with consumption of CLA (Pariza et al., 2000). Several other additional physiological and pathological responses have also been ascribed to CLA including effects on several different kinds of cancers, metastases, atherosclerosis, diabetes, immunity and body fat/protein composition.

The CLA plays important role in cancer prevention by regulating cell metabolism, anti proliferative and apoptotic activities (Ochoa, 2004). Moreover, studies have shown that high CLA intake on consumption of dairy products results in reduction of risk factors associated with colon-rectal cancer (Larsson, 2005).

Furthermore, other plausible mechanisms also have been postulated to elucidate the anti-inflammatory and anticancer activity of CLA. The fatty acids CLA and arachidonic acid (C20:4) compete with each other in influencing the action of cyclooxygenase enzyme and thus resultantly reducing the concentration of pro-inflammatory compounds like prostaglandins and thromboxane of the 2-series. The reduction in activity of cyclooxygenase by CLA decreases the release of pro-inflammatory cytokines such as TNF-alpha and interleukin in animals (Akahoshi et al., 2004). Other mechanisms suggest activation of PPARs transcription factors that reduce the activation of NF-kappa B and thereby reducing cytokines, adhesion molecules and other
inflammatory compounds induced by stress (Cheng et al., 2004).

Furthermore, various other CLA isomers also have emerged concomitant with regulation of several biological activities related to health. Hence, the C18:2 trans 10, cis 12, has also attracted attention lately as it has been postulated to promote weight loss (Parodi, 2004; Belury, 2002) and also with accompanying decrease in glucose levels and plasma insulin resistance (Riserus et al., 2002; Khanal and Dhiman, 2004).

Moreover, among other CLA isomers, the C18:2 cis 9, cis 11 has been reported to be inhibitor of estrogen signalling breast cancer in human cells in vitro assays (Tanmahasamut et al., 2004). While other studies have also highlighted the positive effect of C18:2 trans 9 trans 11 in controlling the growth of human colon cancer cells (Beppu et al., 2006). The studies conducted on bovine endothelial cells exhibited anti proliferative and pro-apoptotic effects (Lai et al., 2005).

Trans fatty acids (TFA)

The TFA is synthesized in milk by rumen bacteria through hydrogenation of PUFAs and its content in milk fat varies from 2.5 to 5% of total fatty acids. The TFA content depends upon seasonal and dietary variations for ruminant species. Therefore, a diet rich in linoleic and linolenic acid coming from pasture feeding in summer leads to higher TFA contents than the diet given in winter which consists of concentrate (Henninger and Ulberth, 1994; Wolff, 1994; Precht and Molkentin, 1997).

The most common TFA present in milk fat is trans-octadecenoic acid (trans-18:1). The content of TFA shows variation in different species. Amongst ruminant, the highest amount of TFA is reported in milk fat of sheep followed by cow and goat respectively. However, the three species show similar pattern of C18:1 trans isomer distribution (Precht et al., 2001). Analogously, the presence of TFA in dairy fat is not correlated with good health.

However, currently TFA has come under scrutiny due to its adverse effect on lipid profile and on other risk factors for CVD; Resultantly the research being directed to the question as to whether industrially derived TFA has similar adverse effects as for dairy derived TFA and also whether both of them undergo similar pattern of metabolic fate or different one (Glew et al., 2010). The isomers of TFA in fats of ruminant origin and partially hydrogenated vegetable oils show remarkable similarity with many isomers in common. However the isomer profile of hydrogenated vegetable fats is very different. The main isomers generated during the hydrogenation of vegetable fats consist of trans monounsaturated fatty acids (e.g. C18:1 trans 9, elaidic acid) whereas the main TFA present in milk fat is C18:1 trans 11, VA (IDF-International Dairy Federation, 2005). Though VA is a TFA, it is quite important one, as it is the precursor of the main isomer of CLA, rumenic acid (RA) which is most relevant bioactive compound present in milk fat. The modulation of VA into RA occurs both in the bovine mammary gland (Griinari and Bauman, 1999; Field, 2009) as well as in human and other animal tissues (Turpeinen et al., 2002; Mosley et al., 2006; Kuhnt et al., 2006).

Scientific studies evidenced that different individual TFA isomers have different physiological effects (Anadón et al., 2010). It has been reported that TFA from hydrogenated oils has adverse effect on LDL and other risk factors of atherosclerosis whereas, the predominant TFA in milk, VA, does not exhibit the deleterious effects (IDF-International Dairy Federation, 2005; Parodi, 2006). Additionally, the evidence generated from studies of Pfeuffer and Schrezenmeir (2006) showed that there was a positive correlation between the risk of CVD and the intake of TFA from hydrogenated vegetable oils. Hence, the scientific data evidenced that intake of TFA is associated with CVD risk, whereas there exists a negative or neutral correlation between animal or dairy TFA.

Minor lipid compounds

Phospholipids

The milk fat globule membrane (MFGM) contains phospholipids which constitute about 0.5-% of total milk lipids (Christie, 1987; Rombaut and Dewettinck, 2006; Rodriguez-Alcalá and Fontecha, 2010; Benoit et al., 2010; Donato et al., 2011; Le et al., 2011). They concluded that phospholipids like sphingolipids and their active metabolites, ceramides and sphingosines, possessed potent antimicrobial activity against pathogens. Besides, there is evidence from controlled studies that phospholipids exhibit tumor-suppressing properties by inducing cell proliferation and also display cholesterol lowering properties (Parodi, 2004; Parodi, 2006; Gustavsson et al., 2010). The phospholipids have been ascribed to carry anti oxidative properties in dairy fat products with low water content (Molkentin et al., 2000). The distribution of phospholipids content in the different ruminant milks are similar with different fractions showing varying proportions: Phosphatidylcholine (35%), phosphatidyl-ethanolamine (30%), and sphingomyelin (25%) are the major constituents,
with smaller amounts of phosphatidylinositol (5%) and phosphatidylserine (3%), (MacGibbon and Taylor, 2006; Sanchez-Juanes et al., 2009; Kielbowicz, 2013). The supplementation of the high-fat diet with a phospholipids-rich dairy milk extract caused a significant decrease of the liver weight, total liver lipid, liver triglycerides and total cholesterol and serum lipids in studies carried out with mice (Wat et al., 2009). Watanabe et al. (2011) also confirmed similar results. Studies conducted by Ohlsson et al. (2009, 2010) on humans, consisting of the supplementation of a sphingolipid-enriched dairy formulation, partially supported the findings that these molecules may affect cholesterol concentrations in TG-rich lipoproteins, but they did not find any effect on the level of plasma lipids or lipoproteins. Keller (2012) concluded that milk PL supplementations influenced the plasma cholesterol amount, but did not change the LDL/HDL ratio.

Ether lipids
The ether lipids present in milk fat are alkyldiacylglycerols and alkylacylphospholipids. Milk neutral lipids are reported to contain 0.01 wt % of 1-O-alkyldiacylglycerols and milk phospholipids to contain 0.16 wt% 1-O-alkylacylphospholipids (Hallgren et al., 1974). Ether lipids and their derivatives have antineoplastic tendencies (Parodi, 1996; Parodi, 1997). They possess anticarcinogenic activities against cancer cells which comprise of inhibition of growth, antimetastatic activity and induction of differentiation and apoptosis (Berdel, 1991; Diomede et al., 1993). It has been established that ether lipids are incorporated and accumulated in cell membranes and thereby influence biochemical and biophysical processes.

Sterols
Sterols represent about 0.25-0.45% of total fat and classified as unsaponifiable portion of milk fat. Its content depends among other things on the method of fat extraction and is believed to be near 0.4 wt % in most cases (Goudjil et al., 2003). Sterols are polycyclic alcohols having a secondary –OH group at position 3, and the presence of this group makes sterols more polar than triglycerides. Minor sterols represent 3-5% of sterol content (Precht, 2001). The minor sterols are mainly intermediates formed during biosynthetic pathway of cholesterol synthesis like lanosterol, desmosterol, lathosterols, dihydrolanosterol and 7-dehydrocholesterol (Fauquant et al., 2007) and also include phytosterols like β-sitosterol, campesterol, brassicasterols which are present in very minor amounts and are most likely to be originating from feed (Walstra and Jennese, 1984). Cholesterol is important for the re-absorption of fats and is a precursor in the synthesis of steroid hormones. Cholesterol is negatively correlated with elevated plasma cholesterol levels along with fatty acids with regard to atherosclerosis and coronary heart diseases.

Conclusion
Milk lipids have a complex composition consisting of a variety of bioactive substances with health promoting attributes. However, milk also contains saturated fatty acids as well as cholesterol which have been negatively associated with health, making consumers skeptical about its consumption. In addition to this, health concerns and nutritional recommendations have contributed to the decline in its consumption. For this reason, global research has been promoted for revitalization of milk fat utilizing its bioactive components. Current strategies to increase CLA in BML also care for their positive correlation with TFA. However, an independent increase of CLA content could further improve the physiological properties of milk fat.

The public perception of whole milk fat dairy products is a significant challenge that faces the dairy industry because of their perceived negative effects on human health. However, milk is a complex food with host of nutrients, and the conclusions from long-term studies and meta-analyses suggest a reduction in risk in the subjects with the highest dairy consumption relative to those with the lowest intake for almost all-cause deaths and diseases. The diversity of milk fat lipids, the variety of bioactive substances that it contains and their physiological functions remains poorly understood. Therefore, further research is required to establish the contribution of these bioactive components of milk fat in human health.

References


Paragraph 1


Paragraph 2


Paragraph 3


Paragraph 4


Paragraph 5


Paragraph 6


Paragraph 7


Paragraph 8


Paragraph 9


Paragraph 10


Paragraph 11


Paragraph 12


Paragraph 13


Paragraph 14


Paragraph 15


Paragraph 16


Paragraph 17


Paragraph 18


Paragraph 19


Paragraph 20


Paragraph 21


Paragraph 22


Paragraph 23


Paragraph 24


Paragraph 25


Paragraph 26


