Antioxidant activity and in vitro inhibition human plasma LDL oxidation of defatted rice bran var. *Menthikwangi* extract

1,2Hartati, S., 2Suparmo, 2Santoso, U. and 2Marsono, Y.

1Study Program of Agricultural Product Technology, Faculty of Agricultural, Veteran Bangun Nusantara University, Jl. Letjend S. Humardani No. 1 Sukoharjo 57521
2Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, GadjahMada University, Jl. Flora, Bulaksumur, Yogyakarta 55281

Abstract

Defatted Rice Bran (DRB), a by-product of the rice milling process, which has been separated from its lipid content, is a source of natural antioxidant mainly hydrophilic antioxidant such as ρ-coumaric and ferulic acid. The objective of this research was to evaluate the antioxidant potential of DRB var. Menthikwangi extracts. Defatted rice bran samples were prepared by removing lipid content with hexane solvent. Three different DRB extracts were prepared, including: (1) METE (methanol extract) was obtained from extraction of DRB with methanol, (2) RESE (residue extract) was obtained from extraction of the hydrolyzate of METE residue, and (3) DRBE (DRB extract) was obtained from extraction of hydrolyzed DRB using ethyl acetate. Results showed that total phenolic content (TPC) of METE, RESE, and DRBE extracts were 39.54±2.92, 305.83±18.40, 285.00±23.38 mg ferulic acid (FA) equivalents/g DRB extract, respectively. Antioxidant activities (expressed as IC-50 of a free radical scavenger of DPPH) of FA, DRBE, RESE, and METE were 33.37±1.10, 143.37±12.40, 177.41±12.40, and 19,525±28.28 ppm, respectively. The ρ-coumaric and ferulic acid content of DRBE and RESE (based on DRB extract) were 4.17±0.10 and 4.91±0.15%, and 3.80±0.09% and 4.31±0.09%, respectively, but not detected in the extract of METE. In vitro inhibitory of LDL oxidation (IC-50 value) of ferulic acid (FA) was 8.8327µg/ml, while for ρ-coumaric (CUM) was 25.8346 µg/ml. IC-50 values of METE, DRBE and RESE were 77.0561 µg/ml, 25.7528 µg/ml and 29.7190 µg/ml respectively. Defatted rice bran extracts especially DRBE and RESE showed potentiality as antioxidant.

Introduction

Phenolic acids are a member of polyphenols group obtained from plant secondary metabolites. Phenolic acids are known for their strong antioxidant capacity, especially to fight against free radicals and reactive oxygen species (ROS), the main causes of human chronic diseases such as cancer, cardiovascular diseases, and diabetes (Andreasen et al., 2001; Yu et al., 2002; Yu et al., 2003). Phenolic acids are mostly located in the outer layer of cereal grain. Rice bran is a good source of phenolic acids, but most of the products were used only as animal feed. In fact, from various research results rice bran were known to have potential health benefits such as anti hypercholesterol (Sharma et al., 1987; Marsono et al., 1993; Revilla et al., 2009), antidiabetic (Mc-Peak et al., 2001; Qureshi et al., 2002; Jung et al., 2007), anticolon cancer (Li et al., 2011), antiproliferative (Damayanti, 2002; Rao et al., 2010), and antioxidants (Damayanti et al., 2004; Devi and Arumaghan, 2007; Chotimarkom et al., 2008; Rivilla et al., 2009; Damayanti et al., 2010). The health benefits of rice bran were due to bioactive compounds such as polyphenols, tocopherols, tocotrienol, oryzanol, panmic acid (Kahlon et al., 1994; Chen and Bergman, 2005), phenolic antioxidant (Sompong et al., 2011) as well as phenolic acids (Devi and Arumughan, 2007a, 2007b; Laokuldidilok et al., 2011). Previous studies of bioactive compounds from rice bran have been focused mainly on the lipophilic compounds such as tocopherol, tocotrienol, and oryzanol, which have shown antioxidant activity. However, there is not too many information on the hydrophilic compounds such as phenolic acids.

The utilization of rice bran as food component faced some technical problems because the bran is very sensitive to hydrolytic and oxidative rancidity (Astawan and Febrinda, 2010). Degradation of bran occurs shortly after brown rice milling process due to the interaction between rice bran oil with lipase and lipoxygenase enzymes that are naturally present in rice bran. Defatting of rice bran is an alternative solution to overcome the problem. Defatted rice bran
studied by Hartati et al. (2014) has a fat content of 3.67± 0.16% db. The product (defatted rice bran, DRB) was hypothesized as a potential antioxidant due to its phenolic content.

Devi and Arumughan (2007b) who studied the phytochemical composition of defatted rice bran, suggested that the total phenolic content in the crude extract of DRB metanolic was 5.3% wt. Constituents of that extract were dominated by the polar phase of phenolic acids of 15,820 ppm. The DRB extract has a DPPH scavenging activity as well as superoxide scavenging activity. The antioxidant activity is in consequence of the majority of total phenolic content (TPC) and ferulic acid contained in the extract. Yamanaka et al. (2010) studied DRB and then added to methyl oleate (ML) under various conditions and evaluated the suppressive effect on lipid oxidation of ML. These studies revealed that the ML oxidation occurs more slowly in the presence of DRB.

Phenolic acids can be classified into 2 groups; i.e. benzoic acid derivative and cinnamic acid derivative. Phenolic acids of rice bran were a member of a hydroxycinnamic acid derivative group (Kim et al., 2006). The presence of CH=CH–COOH in hydroxycinnamic recognized as a key group, which significantly has higher antioxidant activity compared to COOH in hydroxybenzoic acids (Rice-Evans et al., 1996; White and Xing, 1997). Hydroxycinnamic acids consist of ρ-coumaric acid, caffeic acid, ferulic acid and sinapic acid. Although the phenolic acids of rice bran had been studied by some researchers, but information about the composition of phenolic acids in DRB, mainly local varieties (Menthikwangi) from Indonesia, is still limited. The objective of this research was to study the extraction of DRB which phenolic acid rich fraction and to evaluate the total phenolic content (TPC), radical scavenging activity (DPPH test), ferulic and ρ-coumaric acids content of the extracts as well as the in vitro inhibition ability of human plasma LDL oxidation.

Materials and Methods

Materials

Rice bran var Menthikwangi was obtained from a local farmer in Boyolali, Central Java, Indonesia. Chemicals used were hexane, methanol, acetic ethyl, ρ-coumaric acid (Sigma), ferulic acid (Sigma), 2,2-diphenyl-1-picrylhydrazyl (DPPH), Folin–Ciocalteu reagent, LDL (low density lipoprotein) human plasma L8292-IVL (Sigma), ethylenediaminetetra acetic acid (EDTA), thiobarbituric acid (TBA), CuSO4, trichloroacetic acid (TCA), hydrochloric acid (HCl) and natrium hydroxide (NaOH).

Sample preparation

Defatted rice bran samples were prepared according to (Hartati et al., 2014). Fresh rice bran samples were collected directly from the milling machine in the airtight polyethylene bags, stored in a cooler box (± 4°C) and carried out to the laboratory. Rice bran was defatted by extracting its lipid content with hexane using maceration method, and then re-extraction using the same solvent. Fresh rice bran was added to hexane (1:4 w/v), being macerated for 3 h and stirred in a water bath at 60°C, followed by filtration. Re-extraction was performed in the same method as previous work. Residual solvent in DRB were removed using N2 gaseous.

DRB extraction procedure

The extraction of DRB conducted produce three kind of extracts, i.e. methanol extract (METE), residual extract (RESE) and DRB extract (DRBE). The extraction method of METE adopted from Jang and Xu (2009). The extraction method of RESE and DRBE adopted from Qiu et al. (2010). Defatted rice bran residue from methanol extraction and DRB samples (10 g) were collected in a bottle, and further being hydrolyzed with 4 M NaOH (120 ml), blown with N2 to remove the solvent and immediately closed tightly. Each sample were shaken in a water bath for 4 hours, before acidified with 6 N HCl to a pH of 1.5 to 2 gradually and added to 70 mL ethyl acetate with gentle shaking. Ethyl acetate formed in upper layer was separated by a separatory funnel. The addition of ethyl acetate was repeated twice. Ethyl acetate filtrate was being collected for further evaporation with the Rotary evaporator (IKA Werke RV06 ML) at a temperature of 35°C.

Determination of total phenolic content (TPC)

The total phenolic content (TPC) of the DRB extract was determined using the Folin-Ciocalteu reagent (Sompong et al., 2011). One hundred and twenty microlitres (120 µl) of the extract was added to 600 µl freshly diluted of Folin-Ciocalteu reagent (1:10 immediately). Nine hundred and sixty microlitres (960 µl) of sodium carbonate solution (0.7 M) was added to the mixture after 2 min. The absorbance of resulting blue color was measured at 760 nm against a blank after 5 min of reaction at 50°C. Ferulic acid (FA) was used as the standard and the TPC was expressed as mg FA equivalents per g of DRB extract.
Determination of DPPH radical scavenging activity

DPPH radical-scavenging activity of DRB extracts was evaluated according to Sompong et al. (2011) with slight modification. One point five mililitres (1.5 ml) of DPPH (2,2-diphenyl-1-pierylhydrazyl) 0.06 mM was added to 300 µL DRB extract sample with various concentrations, shaken using vortex then incubated in a dark room for 40 min at room temperature. DPPH solution was prepared by dissolving DPPH with methanol HPLC-grade. The absorbance was measured at the wavelength of 515 nm using spectrophotometer (Spectronic 200 Thermo Scientific). Absorbance difference between sample and control (blank sample) indicated radical scavenging activity. The radical scavenging activity was expressed as DPPH scavenging percentage and calculated as follows:

\[
\text{Radical Scavenging Activity(%) = } \frac{\text{Control Absorbance} - \text{Sample Absorbance}}{\text{Control Absorbance}} \times 100
\]

Antioxidant activity of the extract was expressed as an IC-50 value. It denotes the concentration of the sample, which was required to scavenge 50% of DPPH free radicals. An IC-50 value was being calculated using linear regression between sample’s concentration (as X-axis) and RSA (%) (as Y-axis).

Identification of phenolic acid composition of DRB extracts

The phenolic acid composition was identified to determine the individual components of phenolic acids in the DRB extract, especially the ferulic acid (FA) and ρ-coumaric acid. Composition of DRB extract were identified using high performance liquid chromatography (Waters Alliance e2695, YMC Packed Column ODS 150 x 4.6 mm, 5 µm) with a stationary phase and a mobile phase (0-4 min, methanol:acetic acid 2% (5:95), (4-13 min, methanol:acetic acid 2% (35:65 to 38:62), and using a PDA detector at wave length of 200-410 nm with a run time 13 min. The calibration curve of ρ-coumaric acid and ferulic using extract content series of 50.4 mg/ml; 100.7 mg/ml; 201.4 mg/ml; 402.8 mg/ml; and 805.6 mg/ml, obtained linear regression equations of \(Y=69500X+18515 \) and \(Y=67865X-25483 \), respectively.

Determination of in vitro inhibition of human plasma LDL oxidation

Determination of in vitro inhibition of LDL oxidation was adopted from Warnakulesuriya et al. (2014). Briefly, the suspension of LDL from human plasma (IVL L8292 Sigma-Aldrich) was added to the sample with various concentrations (ppm) before it was oxidized. Oxidative stress on LDL plasma was set up by the addition of CuSO4 as an initiator. Termination of the oxidation reaction used ethylene diamine tetra acetic acid (EDTA). The level of LDL oxidation was measured by TBARS (Thioembbituric Acid Reactive Substances) assay. This test measured the malondialdehyde (MDA) as a result of secondary products of lipid peroxidation. Malondialdehyde (MDA) of the isolates was determined using TBARS-LDL (Xu et al., 2007). Inhibition of LDL oxidation ratio was calculated as follows:

\[
\% \text{Inhibitory of LDL oxidation} = \frac{Ac - As}{Ac} \times 100
\]

where Ac is the absorbance of the LDL control and As is the absorbance of the sample. Inhibition of LDL oxidation ability was expressed as an IC-50 value. The IC-50 value is the concentration of the extract demonstrated the ability to inhibit 50% of the oxidation of LDL, which is calculated by a linear regression between the concentration (as the X-axis) and the inhibition of LDL oxidation (%) as the Y-axis.

Preparation of LDL suspension

Low density lipoprotein (LDL) vial (Sigma) was added with 5 ml of PBS (phosphate buffered saline) pH 7.4 and was slightly shaken overnight using a waterbath shaker. This suspension was used as a stock suspension and stored at 8ºC. Each time the tests were performed the suspension sonicated 15 min before it was taken for testing. The suspension diluted with PBS solvent (pH 7.4) as needed before further the test.

LDL-TBARS (LDL-thioembbituric acid reactive substances) assay

The LDL oxidation was determined spectrophotometrically by measuring the amount of TBARS adopted from Xu et al. (2007) with slight modification. Briefly, 320 µL of an LDL suspension (containing 100 µg protein /ml) in PBS (pH 7.4) was incubated with 40 µL Cu2+ 200µM in the presence or absence (control) of 40 µL of diluted DRB extracts (at various concentrations) and other samples. The oxidation was performed in a screw capped 10 mL test tube at 37ºC in a shaking water bath for overnight in the dark. Oxidation reaction was stopped by adding 20 µL EDTA, 1 mM. Two millilitter of 15% (w/v) trichloroacetic acid (TCA) and 0.67% (w/v) thiobembbituric acid (TBA) in 0.1 N HCl were added to the post-incubation mixture. The mixture was heated at 95ºC for 1 h and cooled. After centrifugation at 3000 rpm for 15 min to remove precipitated proteins,
the absorbance of the supernatant was measured at λ 532 nm.

Statistical analysis

All the experiments were performed in triplicate, and experimental data were analyzed using analysis of variance and expressed as a mean value ± standard deviation. A Duncan’s multiple ranges tests were conducted to assess significant differences among experimental mean values (p<0.05). All statistical computations and analyses were conducted using SPSS version 16.0 for Windows.

Results and Discussion

Yield extract, total phenolic content (TPC) and antioxidant activity of DRB extracts

Yields extracts from three DRB extracts obtained in this study (METE, RESE and DRBE) were 3.79 ± 0.18; 0.59 ± 0.16 and 0.65 ± 0.17% DRB respectively (Table 1). Defatted rice bran extract obtained by extracting DRB with methanol (METE) has the highest extract yields while RESE and DRBE yield extracts were not significantly different. These results are similar to Devi and Arumugan (2007a) that reported the extraction of DRB with methanol (4.00%) was the most efficient solvent among other solvents used to extract TPC, oryzanol and ferulic acid from DRB (Devi and Arumugan, 2007a).

Methanol extract (METE) has the lowest TPC content (39.54±2.92 mg FA equivalents per g of extract DRB) compared to other DRB extracts (Table 1). Defatted rice bran extract obtained by extracting DRB with methanol (METE) has the highest extract yields while RESE and DRBE yield extracts were not significantly different. These results are similar to Devi and Arumugan (2007a) that reported the extraction of DRB with methanol has a yield of 4.00%. Methanol was the most efficient solvent among other solvents used to extract TPC, oryzanol and ferulic acid from DRB (Devi and Arumugan, 2007a).

Mean within a column with different letters are significantly different (P<0.05) according to DMRT

Antioxidant activities of DRB extracts

In this research, DRB extract was being assessed its antioxidant activity as a free-radical scavenger (DPPH Test) and expressed in IC-50 value. An IC-50 value was defined as extract concentration to show radical scavenging activity (RSA) of 50%. The highest antioxidant activity indicated by the lowest IC-50.

Antioxidant activities of the three DRB extracts and ferulic acid (FA) as control were shown in Table 2. Methanol extract have the lowest antioxidant activity. Residual extract (RESE) and DRBE extracts seem to have similar antioxidant activity, however, the result is lower than the antioxidant activity of pure ferulic acid (FA). The antioxidant activity of FA, DRBE, RESE and METE as expressed in IC-50 value was 33.37±1.10 ppm, 143.37±12.40 ppm, 177.41±12.40, and 19,525±28.28 ppm, respectively.

There is strong negative correlation between TPC and IC-50 value (r = -0.99; P<0.05). This means that
the higher TPC of extract exhibited the lower IC-50 value and vice versa. Thus, the higher TPC has the higher antioxidant activity. Some researchers have reported that commercial defatted rice bran contains phytochemicals such as oryzanols, tocols (tocopherol) and ferulic acid that are related to possible health benefits as antioxidants which promote a high capacity for free radical scavenging and lipid peroxidation (Devi and Arumughan, 2007a; Devi and Arumughan, 2007b; Devi et al., 2007, 2008). Defatted rice bran also contains significant amounts of protein, carbohydrate, dietary fiber, and phenolic substances, which are beneficial as health promoting and functional substances in foods (Saunders, 1985; Zhou et al., 2004). The substances have good properties such as radical scavenging, anti-oxidative and emulsifying activities (Hamid-Abdul and Luan, 2000; Iqbal et al., 2005).

These results revealed that rice bran dietary fiber is a free radical inhibitor or scavenger, acting possibly as primary antioxidants. They might react with the propagator of auto-oxidation chain of fat (peroxyl radicals) by terminating the chain reaction (Gordon, 1990; Frankel, 1991; Wanasundara and Shahidi, 1992). The antioxidant activity of natural antioxidant has been shown to be involved in the termination of free radical reactions and reducing power (Tanaka et al., 1988; Shimada et al., 1992). Daou and Zhang (2011) revealed that all dietary fiber fractions at high concentration (5% or 50 mg/mL) showed a high antioxidant activity. Scavenging activity of all fraction of rice bran dietary fiber increased with the increase in concentration.

Identification of DRB phenolic acid extract constituents

Identification of phenolic acid extract obtained from DRB was analyzed using HPLC with ferulic acid and ρ-coumaric acid as a standard. Histogram of analyzed extracts shown in Figure 1. The ferulic acid content of DRB extract of METE was lowest than RESE and DRBE samples, moreover ρ-coumaric acid content of METE samples was not detected. The ferulic acid and ρ-coumaric acid content of RESE and DRBE were 4.31±0.09 g/100 g and 3.80±0.09 g/100 g extract, 4.91±0.15 g/100 g of extract and 4.17±0.10 g/100 g extract, respectively.

This result was similar to the previous studies that phenolic substances of rice bran extract are dominated by ferulic acid, ρ-coumaric, p-hydroxybenzoic acid and vanillic acid, while caffeic acid, gentisic acid, protocatechuic acid and syringic acid were trace compounds (Zhou et al., 2004; Tian et al., 2005; Okai and Higashi-Okai, 2006). Among phenolic substance in rice bran, ferulic acid was recognized for its significant quantity and strong free radical scavenging activity (Zhou et al., 2004; Tian et al., 2005; Okai and Higashi-Okai, 2006).

Phenolic acid is the dominant phenolic acid in all rice bran samples studied by Laokuldilok et al. (2011). Total phenolic acids found ranged from 1.53 to 3.29 mg/g in all samples, slightly lower than those phenolic acids have been reported in wheat bran (3.36-3.97 mg/g). Laokuldilok et al. (2011) stated that the main antioxidant found in normal rice bran (not pigmented) were γ-oryzanol and phenolic acids (62.9% and 35.9% of the total antioxidant) while α-tocopherol only 1.2% of total antioxidants. Phenolic acids are also known to have a strong antioxidant capacity and can delay the rate of chain oxidation reaction of free radicals in easily oxidized materials (Tarnawski et al., 2006). The scavenging activity of free radicals DPPH of ferulic acid and α-tocopherol are greater than BHT (Nenadis and Tsimidou, 2002).

Phenolic acids of rice bran included in hydrocycinnamic acids derivatives group (Kim et
al., 2006). Andreasen et al. (2001) stated that there are mainly two groups of phenolic acids in cereal bran: benzoic and cinnamic acid derivatives. Ferulic acid and other hydroxycinnamic acids (caffeic and ρ-coumaric acid derivates) have been found to have good antioxidant activities. The presence of the CH=CH-COOH group in the hydroxycinnamic acids is considered to be key for the significantly higher antioxidative efficiency than the COOH in the hydroxybenzoic acids (White and Xing, 1997). Defatted rice bran extract shows a rich fraction of ferulic and ρ-coumaric acid.

In vitro Inhibition of LDL isolate oxidation testing of DRB extract

In vitro inhibition of LDL isolate oxidation testing (using pure isolates Sigma L8292-IVL) of DRB extract was carried out following procedure performed by Xu et al. (2007). The principle of this test is based on measurement of lipid peroxidation level of reaction between malondialdehyde (MDA) and TBA at high temperatures and in acidic conditions (Jetawattana, 2005). Low density lipoprotein (LDL) oxidation was performed using CuSO4 as an initiator. Malondialdehyde (MDA) reaction with TBA will result in MDA-TBA complex consisting of 2 mol of TBA and 1 mol of MDA with pink color. This complex can be detected by spectrophotometry at a wave length of 521-552 nm. The antioxidant activity of the DRB extract is expressed as the inhibitory ability of MDA formation(%). The ability of inhibition expressed in IC-50, the concentration of the extract demonstrated the ability to inhibit the formation of MDA by 50%. The smaller the concentration of the extract or sample required to inhibiting MDA formation, the higher antioxidant activity.

Thiobarbituric acid reactive substances (TBARS) method is commonly used in the study of lipid oxidation in general and LDL oxidation (Xu et al., 2007; Yoshida and Kisugi, 2010). It has been reported that among all in vitro antioxidant activity test, physiopathology measurement of antioxidant activity in inhibiting the oxidation of LDL seems to be more informative than other methods used to test the antioxidant activity in food to prevent the occurrence of atherosclerosis (Katsube et al., 2005).

The highest antioxidant activity of tested samples in inhibiting MDA formation in LDL oxidation using in vitro test was found in ferulic acid (FA) samples, which shown on its IC-50 value of 8.83 μg/ml (Figure 2). Meanwhile, the lowest antioxidant activity was METE (177.06 mg/ml). IC-50 values of DRBE, RESE, and ρ-coumaric acid did not differ significantly and were 25.75, 29.72 and 25.83 μg/ml, respectively.

Ferulic acid shows therapeutic influence, which is widely attributed to its potential on antioxidant capacity. Chain-breaking activity may have a role in contributing to the protective effect of ferulic acid in oxidative damage (oxidative injury) in humans and studies in vivo (Itagaki et al., 2009). Castelluccio et al. (1996) showed that ferulic acid is more effective against LDL oxidation than the hydrophilic antioxidant, ascorbic acid. While Andreasen et al. (2001) suggested that the antioxidant activity of hydroxycinamate monomers extracts of wheat decreased in the following order: caffeic acid>sinapic acid>ferulic acid>ρ-coumaric acid.

Phenolic acid is a phenolic component, which has three distinguish forms (specific) that may contribute to its free radical scavenging capability. The presence of electrons donors group to a benzene ring (3 methoxys and more importantly 4 hydroxyls) of ferulic acid contribute to its properties in chain termination reactions of free radicals. The next function is carboxyl acid groups on adjacent ferulic acid with unsaturated C–C double bonds, which can provide additional offensive side to free radicals, preventing these radicals from attacking the membrane. In addition, the carboxyl acid group also serves as an anchor of ferulic acid to bind into the lipid bilayer, therefore, providing protection against lipid peroxidation (Kanaski et al., 2002).

Defatted rice bran extracts both RESE and DRBE has high antioxidant activity towards DPPH radicals (Table 2) are supported in this study. Residual extract and DRBE contained both ferulic acid and ρ-coumaric acid (Fig. 1) which will influenced antioxidant activity toward DPPH radicals. Meanwhile, METE did not contain both of them so that the inhibition of LDL oxidation requires the higher concentration of METE than RESE and DRBE. This study showed that the extract RESE and DRBE have high antioxidant activity due to the dominant ferulic acid component. In accordance with the opinion of
some researchers stating that phenolic substances of rice bran extract are dominated by ferulic acid, ρ-coumaric, p-hydroxybenzoic acid and vanillic acid, while caffeic acid, gentisic acid, protocatechic acid and syringic acid were trace compounds (Zhou et al., 2004; Tian et al., 2005; Okai and Higashi-Okai, 2006).

Conclusion

Except METE extract, RESE, and DRBE extracts have high total phenolic content. The antioxidant activity as DPPH free radicals scavenger of RESE and DRBE extracts were also high, although their activities were lower than ferulic acid (FA). The IC-50 value of the antioxidant activity of FA, DRBE, RESE, and METE were 33.35±1.10; 143.09±9.70; 177.66±12.40; 19.52±28.28 ppm, respectively. Bioactive component of DRBE and RESE extracts were ρ-coumaric acid and ferulic acid. In vitro inhibition of LDL oxidation (IC-50 value) of ferulic acid to the major plasma constituents in relation to its potential as an antioxidant. Biochemical Journal 316: 505–511.

Acknowledgements

The first authors gratefully acknowledge to the Directorate General of Higher Education Ministry of Research, Technology, and Higher Education, Republic of Indonesia for awarding the Doctoral Dissertation Grant in 2015 under which the present study was carried out.

References

Iqbal, S., Bhanger, M. I. and Anwar, F. 2005. Antioxidant properties and components of some commercially

