Physicochemical properties and survivability of probiotics in bio-doogh containing wild thyme essence and xanthan gum

Ziaolhagh, S. H. and Jalali, H.

1Agricultural Engineering Research Department, Agricultural and Natural Resources Research and Education Center of Semnan Province (Shahrood), AREEO, Shahrood, Iran.
2Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran

Abstract

In this study, the effect of kakuti or wild thyme (Ziziphora clinopodioides) essence and Xanthan gum on survivability of Bifidobacterium lactis in Iranian yogurt drink (doogh) was evaluated. The kakuti essence was added at concentrations of 50 and 75 µl. The levels of added Xanthan gum were 0, 0.075 and 0.15%. Samples were analyzed after 1, 15, 30 and 45 days of storage. The results of statistical analysis showed that by increasing the amounts of Xanthan gum to 0.075%, B. lactis count increased 1.2 log CFU/ml significantly (P<0.05), but further increasing of the gum, had no significant effect on B. lactis count (p>0.05). Moisture content was decreased as the amounts of Xanthan gum increased. Stability, viscosity and texture score were increased significantly (P<0.05). Samples containing 0.15% of xanthan gum were completely stable during storage period. The acidity increased in all samples during storage and the highest acidity was observed for samples containing xanthan gum. The results of sensory evaluation showed that the flavor scores were decreased significantly (p<0.05) as the amount of essence was increased from 50 to 70 µl. According to the obtained results, at least 0.15% of xanthan gum is necessary to produce a completely stable doogh, although increasing the gum concentration to more than 0.075% did not have any significant effect on the viability of B. lactis. The favorable amount of kakuti essence was observed to be 50 µl. Thus, these additives could be used at the said amounts successfully without having detrimental effects on bio-doogh.

Keywords

Bio-doogh
Herbal flavorings
Probiotics
Wild thyme
Xanthan gum
Yogurt drink

Introduction

Today, different kind of probiotic dairy products such as yoghurt drinks, kefir, cheeses and ice creams are produced in the world. The technological issues relating to the development of these products containing probiotic bacteria in sufficient numbers during storage need to be overcome (Stanton et al., 2003). Doogh is a kind of Iranian fermented acidic dairy drink which is prepared by mixing water, yoghurt, salt and herbal flavorings such as pennyroyal and spearmint. This product provides one fourth of daily requirement of calcium. It contains vitamin B and is useful for the health of teeth. Separation in to two phases due to its high acidity (pH<4) and aggregation of doogh proteins is one of the technological issues of doogh (Azarikia and Abbasi, 2010). To overcome this problem, many researchers have studied the effect of adding different hydrocolloids such as gelan, pectin, guar, locust bean and tragacanth on the stability of this drink (Kiani et al., 2010; Azarikia and Abbasi, 2010). Shafei et al. (2012) evaluated the antimicrobial activity of the essential oil of Ziziphora clinopodioides on Kluyveromyces marxianus. They reported that the minimum inhibitory concentration (MIC) of the essential oil of Ziziphora clinopodioides was 0.25% for Kluyveromyces marxianus. They related this effect to phenolic compounds present in the oil. Vousough et al. (2009) showed that mint extract depending on its concentration could affect the survival of the bacteria Lactobacillus acidophilus and Bifidobacterium lactis, inoculated into yoghurt drinks containing 1% or 2% mint extract. The authors showed that after storing at 4°C, viable B. lactis reduced by 2 log CFU/ml, while L. acidophilus reduced to zero after eight weeks at 4°C. There was no significance difference (P>0.05) between pH and acidity of bio-doogh during storage period. A few studies have been performed on the interaction between flavoring agents of Lamiaceae family and yoghurt starter culture activity. The number of starter culture in set yoghurt containing different concentrations of Ziziphora clinopodioides decreased during storage at 4°C. The extract of Ziziphora clinopodioides at high concentration (4000 µg/L) significantly (P<0.01) decreased the viability of starter culture.
of yoghurt after 19th day (Mehrabansangatash et al., 2007). In another study, it was reported that among mint, clove, cinnamon and cardamom essential oils, the cinnamon essential oil at the concentration of 0.005-0.5% could inhibit the growth of the yoghurt starter bacteria completely (Bayoumi, 1992). The antibacterial effects of Ziziphora clinopodioides on different bacterial species have been studied by many researchers (Chitsaz et al., 2007; Mehrabansangatash et al., 2007; Jamalifar et al., 2009). Azarikia et al. (2009) studied the effects of high-methoxyl pectin, tragacanth, locust bean, tragacanthin, and soybean soluble polysaccharides on the stability of sour Doogh. They showed that tragacanth, tragacanth and locust bean gum could inhibit serum separation for 30 days at a concentration of 0.1, 0.2 and 0.3%, respectively, while soybean soluble polysaccharides caused the stabilization at a concentration of 0.6% only for 6 days (Azarikia et al., 2009). In this study, we aimed to evaluate the effect of the kakuti essence addition on the survivability of Bifidobacterium lactis and the effect of xanthan gum concentration on the stability of bio doogh.

Materials and Methods

Materials
Milk was purchased from a local milk producer in Semnan (Iran). The milk contained 12.5% dry matter, 3% fat and 3.17% protein. Its acidity was 0.14% as lactic acid and its pH and density were 6.73 and 1.030, respectively. The commercial yoghurt starter was a mixed culture of streptococcus thermophiles and Lactobacillus delbrueckii subsp. bulgaricus obtained from Christian Hanson Inc., Denmark. Bifidibacterium lactis was purchased from DSM Company in Australia.

Preparation of probiotic doogh
Milk was pasteurized for 15 minutes at 85°C and cooled up to 44°C. Then the starter culture was added to the milk according to the producer recommendations and incubated at 44°C to reach the pH of 4.4 and then cooled. Xanthan gum at three levels of 0 (as control), 0.075 and 0.15% was added to the water used for dilution of yoghurt. Then 0.8% of salt was added to the solution and it was pasteurized at 90°C for 15 minutes. Yoghurt was diluted at ratio of 50:50 with water containing xanthan gum and salt. After dilution, the kakuti essence at levels of 50 and 75 µl and Bifidibacterium lactis (6.4×10⁸) were added. The samples were packaged in PET bottles and stored for 45 days at 5°C.

Probiotic enumeration
Five milliliters of doogh samples were added to 45 ml of sterile 0.1% peptone solution to prepare 0.1 dilution. Other dilutions were prepared by adding 1 ml of the last dilution to 9 ml of sterile peptone solution. Bifidobacterium lactis was cultured on RCA (Reinforced Clostridia medium Agar) at 37°C for 72 hours under anaerobic conditions using gas pack (Krasaekoopt et al., 2004).

Chemical and physical measurements
Chemical and physical analysis including moisture content, pH, acidity, stability (serum separation) and apparent viscosity were conducted at days 1, 15, 30 and 45.

The stability of doogh was measured according to Amiriaghdaei and Alami method (2011) by use of the following equation:

Apparent viscosity was determined at 20°C by a rheometer equipped with concentric cylinder geometry. The shear rate was increased from 0.1S-1 to 100 at 10-minute intervals to measure the shear stress and viscosity of samples as a function of shear rate.

Sensory evaluation
Sensory attributes of bio-doogh samples including taste and consistency were evaluated using a 5-point hedonic test by 15 trained panelists. The samples were prepared in coded containers presented to panelists one day after preparation at 5°C. Panelists used mineral drinking water after each test to rinse their mouth.

Statistical analysis
This study was conducted using a completely randomized design based on factorial test with three replications. Analysis of variance (ANOVA) was performed on all experimental data and means were compared using Duncan’s multiple range test (DMRT) at the statistical level of 95% (p<0.05) with Minitab 16 software. The treatments were xanthan gum at three levels (0, 0.075 and 0.15%) and kakuti essence at two levels (25 and 75 µl).

Results and discussion
Survival of Bifidobacterium lactis
It is shown in Figure 1 that the effects of storage time, the concentration of xanthan gum and their mutual effects on survival of Bifidobacterium lactis are significant (p<0.05). The number of Bifidobacterium
colonies were significantly increased by addition of 0.075% of xanthan gum, but increasing the level of xanthan gum to more than this amount had no significant effect. The number of *B. lactis* bacteria decreased significantly during 45 days of storage and the lowest number of bacteria was observed for control samples (without gum). After 45 days, the log number of *B. lactis* in the samples containing 0, 0.075 and 0.15% xanthan gum were 6.15, 7.33 and 7.44 respectively. This showed that xanthan gum had increased the survivability of *B. lactis* to about 1.2 log. Xanthan gum, as a prebiotic has an activating effect on the growth of probiotics. Mohebbi and Ghoddousi (2008) reported that the mixture of lactulose–inulin could stimulate the growth of *Lactobacillus casei* and *L. acidophilus* (Mohebbi and Ghoddusi, 2010). Akalin and Erisir (2008) also showed that prebiotics such as oligofructose and inulin improved survivability of probiotics in ice cream. Bifidobacteria prefer fructo-oligosaccharides as carbon and energy sources (Akalin and Erisir, 2008). Inulin increases the survival of *L. acidophilus* and *B. lactis* in ice cream (Akin et al., 2007).

pH and acidity

Statistical analysis showed that the effect of storage time, xanthan gum and kacuti essence on the pH (Figure 2-A) and acidity (Figure 2-B) of bio-doogh were significant (p<0.05). The acidity of control samples decreased until the day 30 and then it increased significantly. The acidity of samples containing 0.075 and 0.15% xanthan gum increased significantly during storage. The pH of the samples containing 0.075% of xanthan gum decreased during 30 days of storage and then increased at the day 45. However, the samples with 0.15% of gum showed no significant changes during storage. This is probably due to the buffer effect of xanthan gum hydrocolloid.

Moisture

The effects of storage time and concentrations of xanthan gum on the moisture content of samples were significant (p<0.05). The moisture of samples decreased as the concentration of xanthan gum increased (Figure 3-B). Xanthan gum is a hygroscopic gum and entraps water.

Stability

The stability of bio-doogh was increased as the concentration of xanthan gum increased and by extending the storage time from 15 days to 45 days, the stability decreased significantly (Figure 3-A). The stability of bio-doogh increased with the concentration of xanthan gum. Samples containing 0.15% of xanthan gum were completely stable during storage period. The stability of samples with 0.075% xanthan gum decreased significantly during storage time. The formation of complexes between proteins and gum in the presence of free radicals is one of the reasons of stability loss during storage (Langendorff et al., 1997; Abbasi and Dickinson, 2004). Xanthan gum especially at high concentrations forms some hydrocolloid network throughout doogh which entraps caseins and water and so prevents from syneresis (Syrbe et al., 1998). Foroughinia et al.
(2007) reported that guar gum at the level of 0.3% decreased syneresis significantly and stabilized the product completely at 0.5% level (Foroughinia et al., 2007). Azarkia and Abbasi (2010) reported that soluble tragacanthin adsorbs onto casein and prevents Serum separation in Doogh via electrostatic and steric repulsions (Azarkia and Abbasi, 2010). Parker et al. (1995) suggested that the addition of xanthan gum to salad dressing leads to the formation of a particle network and the time-dependent yield stress of this network stabilizes the dressing (Parker et al., 1995).

Viscosity

As it is shown in Figure 4, the viscosity of probiotic doogh was increased as the concentration of xanthan gum increased from 0 to 0.15%. The results of different studies showed that the presence of hydrocolloids has significantly changed the viscosity of yoghurt drinks (Paraskevopoulou et al., 2003; Koksoy and Kilic, 2004; Foroughinia et al., 2007; Janhoj et al., 2008). Janhoj et al. (2008) showed that carboxymethyl cellulose increased the viscosity of drinking yoghurt (Janhoj et al., 2008). When xanthan gum is used, cluster formation due to depletion flocculation is less extensive and the formation of week gel by the polysaccharide molecules in the continuous phase will stabilize the casein micelles and fat globules against strong aggregation, cluster formation and precipitation (Paraskevopoulou, 2003).

Sensory evaluation

In Iran the traditional drinks flavored with herbs are very popular. Traditionally, yoghurt and doogh are flavored with herbs such as mint, dill or kacuti. The sensory evaluation of samples showed that the concentration of xanthan gum and kacuti had significant effects on the consistency (Figure 5-A) and flavor (Figure 5-B) of bio-doogh. The consistency scores of samples containing higher concentrations of xanthan gum were higher and this
was in accordance with viscosity measurements. The panelists preferred bio-doogh containing 15µl of kacuti. Higher levels of this herb caused a bitter flavor. Azarkia and Abbasi (2010) showed that the presence of local herbs extracts in doogh stabilized with tragacanth could enhance its taste score. They also reported that gum tragacanth and tragacanthin did not significantly change the consistency of doogh
(Azarkia and Abbasi, 2010).

Conclusion

According to the results, adding xanthan gum at the level of 0.075% increased the number of B. lactis significantly. However, higher levels had no significant effect on the number of B. lactis. The extract of Ziziphora clinopodioides (kacuti) had no significant effect on the number of Bifidobacteria. Thus, we can use this flavoring herb in bio-doogh at the level of 50 µl without any effect on the reduction of probiotics. Concentrations of kacuti more than 50 µl, made the flavor of bio-doogh unfavorable. The bio-doogh stability was the highest at the level of 0.15% of xanthan gum. Also, the viscosity of the product increased with the concentration of xanthan gum. The Ziziphora clinopodioides had no effect on these characteristics. It is recommended that the effect of other flavoring herbs and gums be investigated by other authors.

Acknowledgement

Authors would like to thank Mr. Ali Akbar Mehrabi for his cooperating in doing this research.

References

