Abstract

Channa striatus contains biochemical components and albumin, which elicit beneficial effects to the consumers. This review aimed to clarify the effects of Channa striatus consumption on humans and animals in in vivo studies. A systematic search in four electronic databases namely ProQuest, EBSCOhost, PubMed, and SpringerLink was performed to choose the studies on Channa striatus as the interventions, and its effects on animals and humans. The intervention involved: (i) Channa striatus with placebo-controlled, (ii) Channa striatus pre-treated and treated with drugs, (iii) Channa striatus with the combination of Chronic Unpredictable Mild Stress (CUMS), and (iv) Channa striatus pre-treated with amino acids and methylene blue. Thirteen animal studies and seven human studies were included in the final analysis. They investigated the effects of Channa striatus on wound healing, anti-depressant-like effects, anti-inflammatory effects, and effects on human diseases. Consumption of Channa striatus supplements was found in seven studies to benefit wound healing processes due to the contents of amino acids and fatty acids found in Channa striatus extract. Two studies were found regarding Channa striatus lipid decreased the corticosterone level and nuclear factor-kappa B, while two studies reported of DHA content in Channa striatus inhibited the production of inflammatory mediators. Channa striatus elicits a positive effect on the wound healing process and enhanced antidepressant-like and anti-inflammatory effects due to its high content of amino acids and fatty acids.

Keywords

wound healing, anti-depressant, anti-inflammatory, ikan haruan

© All Rights Reserved

Introduction

Channa striatus, or snakehead fish, is a freshwater, air-breather, and carnivorous fish indigenous to many tropical countries (Baie and Sheikh, 2000a). Channa striatus is known locally to the Malays as ikan haruan, and widely consumed in Malaysia and other Southeast Asian countries (Zakaria et al., 2005a). This snakehead fish belongs to the Channidae family. There are 30 species of snakehead fish in the Channidae family reported worldwide, and eight of them are found in Malaysia. Other species of the Channidae family are also found in Myanmar, Thailand, Laos, Cambodia, Vietnam, Brunei, Philippines, Indonesia, and Singapore (Ali Khan et al., 2014). Channa striatus is a wild species and a top predator in shallow and slow-moving waters with temperatures between 20 - 30°C. It is also a good survivor in tough environment with low dissolved oxygen and turbidity (Shafri and Abdul Manan, 2012). Several previous studies showed that Channa striatus contains biochemical components such as essential amino acids and fatty acids (Baie and Sheikh, 2000b; Laila et al., 2011; Sahid et al., 2018), and also glycine, a non-essential amino acid (Zakaria et al., 2007) in Channa striatus extract. Moreover, Dahlan-Daud et al. (2010) mentioned that there are other non-essential amino acids discovered such as glutamic acids, arginine, and aspartic acid. Other than that, amino acids such as glutamic acid, glycine, leucine, aspartic acid, proline, alanine, and arginine have been reported with values 1.87 - 43.13, 21.80 - 80.85, 7.85 - 40.19, 13.85 - 44.07, 9.49 - 45.46, 11.38 - 35.25, and 5.99 - 21.79 mg/g, respectively. Channa striatus has high contents of arachidonic acid and polyunsaturated fatty acids that can accelerate prostaglandin synthesis (Jais and Manan, 2007; Shafri and Abdul Manan, 2012), which plays a crucial role in wound healing. Zakaria et al. (2005a) mentioned that the entire fish could be a dietary medicine, consumed by grilling, dry-frying, or boiling in porridge for wound healing. The typical contents of Channa striatus is shown in Table 1.

Among freshwater fishes, Channa striatus appears to have a medium level of antioxidant activities, possibly contributed by albumin, which acts...
Table 1. Typical contents of *Channa striatus*.

<table>
<thead>
<tr>
<th>Amino acid (g/100 g)</th>
<th>(Gam et al., 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutamic acid</td>
<td>13.42 - 14.57</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>8.36 - 9.37</td>
</tr>
<tr>
<td>Lysine</td>
<td>8.61 - 9.13</td>
</tr>
<tr>
<td>Arginine</td>
<td>8.39 - 9.18</td>
</tr>
<tr>
<td>Leucine</td>
<td>8.35 - 8.87</td>
</tr>
<tr>
<td>Alanine</td>
<td>5.78 - 6.04</td>
</tr>
<tr>
<td>Valine</td>
<td>5.14 - 4.67</td>
</tr>
<tr>
<td>Threonine</td>
<td>5.15 - 5.50</td>
</tr>
<tr>
<td>Serine</td>
<td>4.70 - 5.23</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>4.64 - 5.09</td>
</tr>
<tr>
<td>Glycine</td>
<td>4.55 - 5.97</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>4.49 - 5.23</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>4.02 - 4.31</td>
</tr>
<tr>
<td>Proline</td>
<td>3.58 - 4.08</td>
</tr>
<tr>
<td>Methionine</td>
<td>3.14 - 3.92</td>
</tr>
<tr>
<td>Histidine</td>
<td>2.49 - 3.06</td>
</tr>
<tr>
<td>Cysteine</td>
<td>0.88 - 1.64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fatty acid (%)</th>
<th>(Zakaria et al., 2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmitic acid (C16:0)</td>
<td>35.93 ± 0.63</td>
</tr>
<tr>
<td>Oleic acid (C18:1)</td>
<td>22.96 ± 0.40</td>
</tr>
<tr>
<td>Searic acid (C18:0)</td>
<td>15.31 ± 0.33</td>
</tr>
<tr>
<td>Linoleic acid (C18:2)</td>
<td>11.45 ± 0.31</td>
</tr>
<tr>
<td>Arachidonic acid (C20:4)</td>
<td>7.44 ± 0.83</td>
</tr>
<tr>
<td>Heptadecanoic acid (C17:0)</td>
<td>2.90 ± 0.56</td>
</tr>
<tr>
<td>Myristic acid (C14:0)</td>
<td>2.15 ± 0.11</td>
</tr>
<tr>
<td>Palmitoleic acid (C16:1)</td>
<td>1.86 ± 0.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mineral (mg/kg)</th>
<th>(Paul et al., 2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium (Ca)</td>
<td>5279</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>276</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>8.30</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>4.93</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0.06</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>0.01</td>
</tr>
<tr>
<td>Chromium (Cr)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nutrient (g/100 g)</th>
<th>(Mustafa et al., 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>3.36 ± 0.29</td>
</tr>
<tr>
<td>Albumin</td>
<td>2.17 ± 0.14</td>
</tr>
<tr>
<td>Fat</td>
<td>0.77 ± 0.66</td>
</tr>
<tr>
<td>Glucose</td>
<td>0.07 ± 0.02</td>
</tr>
</tbody>
</table>

as a radical scavenger (Dahlan-Daud et al., 2010; Suhartono et al., 2013). Albumin contains many sulphydryl groups (-SH) that can serve as a radical binder and plays an important role in inhibiting free radical production by polymorphonuclear leukocytes. The antioxidants present in *Channa striatus* are lipophilic antioxidants, which represent powerful defence tools particularly against oxidative stress, malondialdehyde (MDA), and reactive oxygen species (ROS) (Suhartono et al., 2013). Thus, exogenous antioxidant supplements such as *Channa striatus* can be a suitable non-invasive tool in reducing oxidative stress.

Channa striatus extract has also been shown to increase the tensile strength of the surgically stitched wound (Baie and Sheik, 2000a) but mostly involved animals such as rabbits and rats. In human studies, *Channa striatus* extract was used to treat symptoms of knee osteoarthritis in older patients (Kadir et al., 2014; Azidah et al., 2017), reducing pain (Bakar et al., 2015; Wahab et al., 2015), and chronic inflammation (Zuraini et al., 2006) after post-caesarean in women, and also inducing cytokine conversion in pulmonary tuberculosis patients (Paliliewu et al., 2013). A previous study by Michelle et al. (2004) also found that *Channa striatus* could reduce soft tissue swelling and synovial inflammation, and significantly improved the density of PGP 9.5-immunoreactive nerve fibres in the synovial membrane.

Hence, the main aim of this systematic review was to clarify the findings of published research studies that primarily focus on the effects of *Channa striatus* consumption on humans and animals’ studies.

Materials and methods

Data sources

A comprehensive review on all in vivo studies on *Channa striatus* was performed using databases such as ProQuest, EBSCOhost, PubMed, and SpringerLink. A comprehensive search of the databases was performed using the keywords #Channa striatus AND #human OR #animal. A cross-referencing on the related published studies was also performed to obtain additional articles. Peer-reviewed articles in English language from January 2000 until December 2019 were used. No attempts were made to contact authors for further information. Comparable searches were done for other databases.

Study selection

The search was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. The keywords used during the search were #Channa striatus AND #humans OR #animals. Studies were screened to choose *Channa striatus* as the interventions, and its effects on animals or humans as the outcome measures. Laboratories studies and randomised controlled trials were included in this review. The intervention involved: (i) *Channa striatus* with placebo-controlled, (ii) *Channa striatus* pre-treated and treated with drugs, (iii) *Channa striatus* with the combination of Chronic Unpredictable Mild Stress (CUMS), and (iv) *Channa striatus* pre-treated with amino acids and methylene blue. The authors evaluated the methodological quality of each paper by using the Physiotherapy Evidence Database Scale (PEDro) for randomised controlled trials (Sherrington et al., 2000). The PEDro scale consists of 11 scored yes-or-no questions. The first statement pertains to the external validity of the study,
and was not included in computing the final score. The high quality of the study was achieved when the PEDro scored a value of 6 and above, whereas a score of 5 and below represented a low quality of the study. Differences in opinion on any PEDro item scores were resolved through discussion until a consensus was attained.

Data extraction

The specified criteria were used when reviewing the titles and abstracts of retrieved articles to determine whether full texts were required for further analysis. Each full-text manuscript was evaluated systematically according to (1) objectives, (2) study design, participants or model, age, and sample size, (3) intervention contents (intervention types and length of intervention), (4) targeted outcomes, and (5) main findings. The outcomes extracted from those studies were not combined, reanalysed, or altered due to the nature of this systematic review.

Results

Search results

The initial search from the databases identified 1,038 potential articles. After filtered only for full-text articles from January 2000 until December 2019, 581 articles were found. A total of 554 articles were excluded because they did not investigate *Channa striatus* on humans and animals. After a detailed analysis of the 27 full-text articles, only 20 articles were included in this systematic review. The excluded articles were duplicated articles. Figure 1 illustrates the PRISMA flow diagram for the study selection.

From the 20 studies reviewed, 13 studies were conducted on animals, while the remaining seven studies were conducted on humans. The scope of the study from those retrieved articles was primarily on the effects of *Channa striatus* extract on wound healing. Secondly, a few animal studies investigated the effects of *Channa striatus* extract on antinociceptive activity, antidepressant-like effect, and antilucer activity. One of these studies investigated more than one measurement combination which are antinociceptive activity, anti-inflammatory, and antipyretic properties. In addition, some studies were done on humans where it investigated the effectiveness of *Channa striatus* on osteoarthritis, allergic rhinitis, and tuberculosis.

The amount of *Channa striatus* presented was ranged between 10 to 1,000 mg/kg/bw (body weight) in animal studies, while most studies (Wahab et al., 2015; Bakar et al., 2015; Shukkoor et al., 2016; Shafii et al., 2017; Azidah et al., 2017; Sahid et al., 2018; Susibalan et al., 2018; Azemi et al., 2018; Ma’rufi et al., 2019) prescribed 500 mg per day of *Channa striatus* in human studies. Calculation of the human dosage was based on animal studies by using the formula below (Shin et al., 2010):

\[
\text{Human Equivalent Dose (HED) in mg/kg} = \frac{\text{animal dose mg/kg} \times 3 \text{ mice Kg}}{\text{Human Kg}}
\]

(Eq. 1)

In animals, the standard dose for the administration of *Channa striatus* extract is 10 mL/kg. Based on 10% (w/v) or 0.8 g/kg, the animal dose was 80 mg/kg. Therefore, the dose in human can be calculated as below (Shin et al., 2010):

\[
\text{Human Equivalent Dose (HED) in mg/kg} = \frac{80 \text{ mg/kg} \times 3 \text{ mice Kg}}{37 \text{ Human Kg}} = 6.49 \text{ mg/kg}
\]

(Eq. 2)

According to Human Equivalent Dose (HED; in mg/kg) equation, for humans with an average weight of 70 kg, the therapeutic amount of *Channa striatus* aqueous extract is 64.9 mg/kg × 70 kg = 454.3 – 500 mg. Based on the calculation, the calculated dose for humans based on 20% (w/v), or 1.6 g/kg in the animal, would be 1,000 mg/day for humans with an average weight of 70 kg.

Eight studies used multiple dosages of *Channa striatus* supplementation based on the standard dose administration. Meanwhile, there were four studies combining *Channa striatus* extract with other components namely cetrimide (Baie and Sheikh, 2000a; 2000b), 12-O-tertradecanoylphorbol-13-acetate (TPA) (Isa et al., 2016), and fusidic acid (Laila et al., 2011). There was a study that pre-treated the experimental animals with certain drugs such as prazosin, yohimbine, *p*-chlorophenylalanine methyl ester (PCPA), (R)-(+)7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390), sulpiride, and fluoxetine (Saleem et al., 2013). In addition, some were pre-treated with naloxone, and an antagonist (atropine, mecamylamine, phenoxybenzamine, pindolol, haloperidol, methysergide, and bicuculline) also had been used in the study by Zakaria et al. (2005a). One study combined the Chronic Unpredictable Mild Stress (CUMS) protocol which was designed to develop depressive symptoms in animals with the *Channa striatus* supplementation (Shukkoor et al., 2016).

Based on the retrieved articles, some studies used *Channa striatus* in both tablet and extract forms.
Table 2. Studies of *Channa striatus* in animals.

<table>
<thead>
<tr>
<th>No.</th>
<th>Author and year</th>
<th>Study target / target population</th>
<th>Channa striatus dosage</th>
<th>Intervention</th>
<th>Outcome measure</th>
<th>Main finding</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ali Khan et al. (2014). Gastroproective effect of freeze-dried striped snakehead fish (Channa striatus Bloch) aqueous extract against aspirin induced ulcerogenesis in pylorus ligated rats.</td>
<td>30 antiulcer property, male albino Wistar rats randomised into five different groups of six rats each. Group I is a negative control group and received vehicles. Group II, III, and IV received aqueous extract of Channa striatus (AECs) at 30, 40, and 50% (w/v) concentrations. Group IV received standard drugs (Ranitidine).</td>
<td>10 mg/kg/bw</td>
<td>Aspirin suspended in 1% CMC in water was administered orally at a dose of 50 mg/kg in 12-h fasted rats. The test was extracted, and Ranitidine treatment was done 30 min prior to the administration of aspirin. Then, the pyloric ligation surgery was performed after 30 min.</td>
<td>Volume and pH of gastric juice, free and total acidities, ulcer index (UI), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA).</td>
<td>40 and 50% (w/v) of AECs showed significantly decreased volume of gastric juice and increased level of catalase. There was a significant decrease in free and total acidities, and an increase in superoxide dismutase was noticed in 50% (w/v) AECs solution and standard drugs. Meanwhile, all test doses of AECs solutions significantly decreased the UI and SOD compared to standard drugs. However, 30% (w/v) of AECs did not show any significant values on volume and pH of gastric juice, free and total acidities, catalase, and superoxide dismutase.</td>
<td>AECs is devoid of gastric acid neutralising effects but possesses potent antisecretory and antiulcer properties.</td>
</tr>
<tr>
<td>2</td>
<td>Asemi et al. (2018). Antiulcer activity of methanol-chloroform extract of Channa striatus fillet.</td>
<td>For untreated rats, 20 male Sprague Dawley rats were divided into negative control (10% DMSO) group, positive control (Ranitidine) group, and three doses of chloroform: methanol Channa striatus fillet (CMCS) group. In pre-treated rats, 30 rats were used and was divided six in each group. The rats were pre-treated with normal saline, L-NAME, and NEM.</td>
<td>50, 250, and 500 mg/kg/bw</td>
<td>Untreated rats fasted for 24 h before oral administration of 10 mL/kg of 10% DMSO, 100 mg/kg of ranitidine, and 50, 250, and 500 mg/kg of CMCS. Pre-treated rats were treated with normal saline, L-NAME, and NEM. After 30 min, the rats received an oral dose of 10% DMSO, 1,000 mg/kg carbenebolone, 500 mg/kg of CMCS, and 70 mg/kg L- arginine only for normal saline and L-NAME groups. After 1 h, all rats were treated with 1 mL of absolute ethanol to induce gastric ulceration.</td>
<td>Antiulcer activity, volume and pH of gastric juice, total acidity, and antiulcer activity.</td>
<td>CMCS showed significant (p < 0.05) antiulcer activity. CMCS also did not change the volume and pH but reduced total acidity. Besides, CMCS demonstrated that antiulcer activity was reversed by NEM but not affected by L-NAME.</td>
<td>CMCS shows that antiulcer activity is modulated via its cytoprotective, but not in antisecretory effect; and in the presence of sulfhydryl compounds, not nitric acid.</td>
</tr>
<tr>
<td>3</td>
<td>Baie and Sheikh (2000b). The wound healing properties of Channa striatus cetrimide-wound contraction and glycosaminoglycan measurement.</td>
<td>96 male Sprague Dawley rats were divided into four groups in both sets of the experiment (normal rats and diabetic rats): Group 1: Wounds treated with cream containing cetrimide and Haruan extract, Group 2: Wounds treated with cream containing cetrimide, Group 3: Wounds treated with cetrimide cream, and Group 4: Wounds treated with Haruan cream.</td>
<td>Local application that enough to cover the wound (concentration of extract is 1%)</td>
<td>Excision was created on experimental rats. The cream was applied to the wound. Then, rats were sacrificed at intervals 3, 6, 9, and 12 days after wound creation.</td>
<td>Hexosamines, protein, uranic acid, glycosaminoglycans, and wound contraction were determined.</td>
<td>For hexosamine and protein determination, Groups 1 to 3 showed higher hexosamine content compared to Group 4 in both normal and diabetic rats. Groups 1 to 3 also showed higher values of uranic acid compared to Group 4 in the normal rat. The diabetic rats followed the same sequences of uranic acid synthesis but at slower rates. In addition, the level of glycosaminoglycan was higher in the treated group compared to the control group on all alternates in normal rats as compared to the diabetic rats. For wound contraction and glycosaminoglycan measurement, the enhanced level of glycosaminoglycan may help in the formation of a resistant scar, and enhanced wound contraction represents the positive influence of Haruan.</td>
<td>The enhanced level of glycosaminoglycan may help in the formation of a resistant scar, and enhanced wound contraction represents the positive influence of Haruan.</td>
</tr>
</tbody>
</table>
Group 4: Wounds untreated (control group).

<table>
<thead>
<tr>
<th>4</th>
<th>Baie and Sheikh (2000a). The wound healing properties of Channa striatus cetrimide cream-tensile strength measurement. 40 male adult Sprague-Dawley rats were divided into four groups: Group 1: Wounds treated with cream containing Channa striatus and cetrimide, Group 2: Wounds treated with Channa striatus cream, Group 3: Wounds treated with cetrimide cream, and Group 4: Wounds untreated served as control. Incision wound was made on the rats. The wound was closed with interrupted sutures. Rats were sacrificed on the 7th post-operative day. Tensile strength measured by TA.XT2 texture analyser. Groups 1 to 3 showed a significant increase in tensile strength (p < 0.05) compared to the control group (Group 4). Channa striatus helps in wound healing, which may be due to an increase in tensile strength.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Isa et al. (2016). Channa striatus cream down-regulates tumour necrosis factor (TNF)-alpha gene expression and alleviates chronic-like dermatitis in the mouse model. 30 male ICR mice randomised into six groups with five mice in each group: (1) acetone (vehicle), (2) TPA alone (negative control), (3) TPA + Haruan 1%, (4) TPA + Haruan 5%, (5) TPA + Haruan 10%, and (6) TPA + 15-Cort (positive control). All groups were subjected to the TPA application except for the vehicles that received acetone only for three consecutive days. For Haruan treatment, Haruan cream was applied on the ear surface twice per day after 1 h of TPA application and 6 h after the first treatment with Haruan cream. The mice were assessed on day 10 after 24 h of application with TPA. Mouse ear oedema assessment, histopathological analysis, and regulation of gene expression of inflammatory cytokines. Topical application of Haruan cream had reduced the mouse ear thickness compared to the positive control group. There was also a significant reduction (p < 0.001) of mouse ear thickness by Haruan 1.5, and 10% compared to the TPA alone group. In addition, the histopathological comparison had shown reduction in various parameters of cutaneous inflammation including dermal oedema, inflammatory cells infiltration, and proliferation of epidermal keratinocytes. TPA application resulted in the up-regulation of TNF-B gene expression by 353-fold, which subsequently down-regulated by the Haruan cream (34 to 112-fold). Haruan is an effective topical anti-inflammatory agent in this mouse model of chronic-like dermatitis.</td>
</tr>
<tr>
<td>6</td>
<td>Laila et al. (2011). Wound healing effect of Haruan (Channa striatus) spray. Incision wound model: 72 Sprague-Dawley rats randomised into three groups with 24 rats for each group, (1) wound treated with blank formula, (2) wounds treated with formula P1 (Haruan water extract), and (3) wound treated with P2 (Haruan extract with fusidic acid). Burn wound model: 24 adult female Sprague-Dawley rats divided into four groups with six rats in each group, (1) control group, (2) treated with formula P, (3) treated with formula P1, and (4) treated with formula P2. Incision wound model: Local application that enough to cover the wound. All groups were euthanised at intervals of 9, 6, 9, and 12 days after wounds creation, and the analysis was performed on the same day. Rats for the burn wound model were treated for 21 days to see the wound contraction. Primary irritation test, intracutaneous test, systemic injection test, tensile strength test, and wound contraction. The Haruan spray-on treated rats gave no significant responses to the primary irritation, intracutaneous, and systemic injection test. Tensile strength test showed no significant difference between the groups treated with P, P1, and P2. However, all groups showed an increase in tensile strength from day 6 to 9. On day 4, P1 treatment significantly showed a higher percentage of wound closure compared with the control group. In the first ten days, P1 treatment gave a higher percentage of wound closure compared with the other group. Haruan water extract spray formula was effective and safe for application on both incision and burn wounds.</td>
</tr>
</tbody>
</table>
formula P1, and (4) treated with formula P2.

On day 3, the number of fibroblasts in all Channa striatus treatment groups was higher compared to the control group. The highest number of fibroblasts found in the treatment group with Channa striatus extract at concentrations of 100% ($p < 0.05$). In addition, all the Channa striatus treated groups showed higher FGF-2 expression compared to the control group. The highest expression of FGF-2 was found in the treated rats with concentration at 50% of Channa striatus ($p < 0.05$).

Pre-treatment with PCPA showed a significantly prevented decrease in immobility time induced by AECFSF ($p < 0.05$) compared to their respective groups. Moreover, pre-treatment with prazosin ($p < 0.001$) and yohimbine ($p < 0.01$) significantly prevented the decrease in immobility time induced by AECFSF treatment when compared to pre-treatment with a vehicle.

The lipid extract of Channa striatus (125, 250, and 500 mg/kg) significantly ($p < 0.05$) reversed all the parameters in rats subjected to CUMS, thus exhibiting the antidepressant-like effect. CUMS protocol increased plasma corticosterone, increased in dopamine and noradrenaline level in hippocampus and prefrontal cortex, and increased interleukin-6 in the hippocampus and prefrontal cortex, and increased factor-kappa B in the prefrontal cortex, not in the hippocampus.
Shukkoor et al. (2017), Antidepressant-like effect of lipid extract of *Channa striatus* in a postpartum model of depression in rats.

48 female Sprague-Dawley rats were divided into eight different groups, with six rats in each group.
1. Normal control
2. Sham control
3. Positive control
4. Ovariectomised vehicle group
5. Ovariectomised with hormone simulated pregnancy control group
6. Ovariectomised + HSP + lipid extract 125 mg/kg
7. Ovariectomised + HSP + lipid extract 250 mg/kg, and
8. Ovariectomised + HSP + lipid extract 500 mg/kg

The rats were ovariectomised and treated with a high dose of progesterone and estradiol benzoate for 23 d to have hormone-simulated pregnancy. Day 24 onwards was considered as the postpartum period. On postpartum day 15, the animals were tested in FST, OFT, and followed by biochemical analysis.

In FST, all doses of lipid extracts (*p* < 0.001) and positive control fluoxetine (*p* < 0.01) showed a significantly decreased in the duration of immobility when compared to the HSP control group. Meanwhile, in OFT, the lipid extract at doses 125 and 250 mg/kg (*p* < 0.01) and fluoxetine (*p* < 0.05) showed a significantly decreased number of squares crossed when compared to the HSP control group. Meanwhile, lipid at dose 125 mg/kg (*p* < 0.05) significantly decreased the number of rearing compared to the HSP control group.

The mechanism of antidepressant-like effect may be mediated through the decrease in plasma corticosterone, an increase in plasma oxytocin, and a decrease in nuclear factor-kappa B in the prefrontal cortex of rats.

Zakaria et al. (2007), Amino acid and fatty acid compositions of an aqueous extract of *Channa striatus* (Haruan) that exhibits antinociceptive activity.

72 male ICR mice were divided into six groups, with 12 mice per group. Control group, aspirin-treated group, 100% aqueous extract of Haruan (ASH), and three extract-treated groups (25, 50, and 100% ASH).

All the mice were administered with the respective doses to their group. The mice were then left to rest for 30 min before being given acetic acid. All solutions were administered in a volume of 10 ml/kg.

Antinociceptive activity of the aqueous extract of Haruan.

The ASH showed significant (*p* < 0.001) concentration-dependent antinociception, which compared to aspirin-produced antinociception. However, the lowest naloxone used exhibited a significant (*p* < 0.05) decrease in the number of abdominal contractions, indicating the presence of antinociception. In addition, pre-treatment with atropine, phencyclidine, and methylene blue produced a significant (*p* < 0.001) reduction in ASH inhibitory effects on antinociception. Atropine and bicuculline caused the highest reversal of ASH antinociception with the lowest analgesia.

Aqueous extract of *Channa striatus* contains all important amino acids but only some of the important fatty acids that are suggested to play a key role in the antinociceptive activity of the extract.

Zakaria et al. (2005a), Effects of various antagonists on the antinociceptive activity of *Channa striatus* fillet extract in mice.

Male KR Balb-C mice were equally divided into 33 groups of ten mice each. There were control groups that received distilled water. Test groups were treated with an antagonist, pre-treated groups with naloxone, and the rest is only 100% concentration of ASH used.

Groups treated with aqueous extract of Haruan showed a dose-dependent increase in inhibition of abdominal constriction to approximately 23, 51, 76, and 81% of control respective to the strength of doses.

The aqueous extract of *Channa striatus* contains all important amino acids but only some of the important fatty acids that are suggested to play a key role in the antinociceptive activity of the extract.

Zakaria et al. (2005b), The effects of L-arginine, D-arginine, L-name, and methylene blue on *Channa striatus*-induced peripheral antinociception in mice.

All male Balb-C mice were divided into 25 groups of ten mice each. Five groups were pre-treated with dH2O, followed 5 min later by treatment with dH2O, AS, or ASH (0.107, 0.426, and 1.074 mg/kg), respectively. Other 20 groups were pre-treated with 20 mg/kg L-arginine, D-arginine, L-NAME, or MB followed 5 min later by treatment with dH2O, AS, or ASH (0.107, 0.426, and 1.074 mg/kg), respectively.

All mice were administered with their respective treatment. 30 min after administering the respective dH2O, AS, or ASH (0.107, 0.426, and 1.074 mg/kg), respectively, the mice were injected with 0.6% acetic acid intraperitoneally.

Antinociceptive activity.

Administration of ASH alone showed exhibited dose-dependent antinociception while the L-arginine and MB exhibited significant both nociception and antinociception. However, pre-treatment with L-arginine and MB found significantly reverse the three respective doses of ASH antinociception, while L-NAME only significantly increased the 0.170 and 0.426 mg/kg ASH antinociception.

Aqueous supernatant of Haruan (ASH) antinociception involves the nitric oxide. The presence of nitric oxide was found to reverse ASH antinociceptive activity.

AECS = aqueous extract of *Channa striatus*; DMSO = dimethyl sulfoxide; CMCS = chloroform methanol *Channa striatus*; L-NAME = NG-octamino-nitro-L-arginine methyl ester; NEM = N-ethylmaleimide; H-Cort = hydrocortisone 1%; TPA = 12-O-tetradecanoylphorbol-13-acetate; SCH3390 = halobenzepine; ASH = aqueous solution Haruan; and dH2O = distilled water.
which were administered orally to the subjects (Saleem et al., 2013; Ali Khan et al., 2014; Wahab et al., 2015; Bakar et al., 2015; Oentryo et al., 2016; Shukkoor et al., 2016; 2017; Azidah et al., 2017; Shafii et al., 2017; Azemi et al., 2018; Sahid et al., 2018; Susibalan et al., 2018; Ma’rufi et al., 2019). Meanwhile, in studies done by Baie and Sheikh (2000a; 2000b) and Isa et al. (2016), Channa striatus cream was applied on wounds, whereas Channa striatus spray was described by Laila et al. (2011).

In vivo Channa striatus studies on animals

Table 2 summarises the studies done on animals. Three studies conducted on rats and mice with a local application of 5 to 10 mg Channa striatus cream (Baie and Sheikh, 2000a; 2000b; Isa et al., 2016) showed a significant increase in tensile strength, enhanced wound contraction, and reduced ear oedema thickness. Another three studies done by Zakaria et al. (2005a; 2005b; 2007) found that mice orally administered with 10 mg/kg/bw of Channa striatus aqueous extract showed dose-dependent antinociceptive and a decrease in the number of abdominal constrictions. Meanwhile, Laila et al. (2011) reported that wounds of mice treated with Channa striatus spray showed a higher percentage of wound closure as compared to the untreated group in the first ten days.

Saleem et al. (2013) and Shukkoor et al. (2017) investigated Channa striatus supplementation of 10 mg/kg/bw on antidepressant-like effect. The authors reported that the Channa striatus group showed a significantly decreased mobility duration in the forced swimming test (FST) and the number of squares crossed in the open field test (OFT). However, pre-treatment with p-chlorophenylalanine (PCPA), prazosin, and yohimbine significantly prevented the decrease in immobility time (reversed the antidepressant-like effect) of Channa striatus aqueous extract in tail suspension test (TST). Meanwhile, Shukkoor et al. (2016) reported that a combination of Channa striatus extract administration (250 and 500 mg/kg/bw) with CUMS significantly reversed the FST and OFT parameters, thus exhibiting the antidepressant-like effect.

There are two studies that investigated the effects of Channa striatus on antihucler properties. Ali Khan et al. (2014) evidenced that rats treated with aqueous extract of Channa striatus (10 mg/kg/bw) significantly decreased the volume of gastric juice, ulcer index, and superoxidase dismutase. The study also found an increased level of catalase. However, Azemi et al. (2018) found that antulcer activity was reversed by pre-treated N-ethylmaleimide (NEM). A study done by Oentryo et al. (2016) found that Channa striatus administration to the rats increased the number of fibroblasts and FGF-2 expression as compared to the control group during wound healing.

In vivo Channa striatus studies on humans

Table 3 shows the summaries of studies on humans. There are three studies conducted on post Lower Segment Caesarean Section (LSCS) women. According to Bakar et al. (2015), LSCS women supplemented with Channa striatus tablet of 500 mg per day for six weeks showed a decrease in measurements of a longitudinal and oblique transverse plane on the uterus as compared to the placebo group. The uterus involute was faster in the Channa striatus groups, which significantly enhanced healing.

Wahab et al. (2015) reported significant improvement in visual analogue scale (VAS) scores and patient satisfaction score (PSS) in the Channa striatus group, when consumed 500 mg per day of Channa striatus for six weeks. The consumption of Channa striatus marked a difference in terms of wound cosmetic appearance and PSS towards the wound appearance in this study. Meanwhile, a study done by Shafii et al. (2017) reported that the Channa striatus group and placebo group had an equivalent effect on the reactive protein (hsCRP), total white cell counts (TTWC), and platelets counts from day 1 to 3. However, there were no positive effects found on both groups on day 3, postoperatively. That study claimed that Channa striatus supplementation at day 3 yielded no changes in inflammatory markers during wound healing in post LSCS.

There was one study done on osteoarthritis patients by Azidah et al. (2017). This study showed that the treatment group supplemented with 500 and 1,000 mg/day of Channa striatus for six months exhibited greater decreases in WOMAC physical function and stiffness score as compared to a placebo group. Other than that, a study conducted by Ma’rufi et al. (2019) on tuberculosis patients reported the acceleration of tuberculosis treatment by Channa striatus supplement at week 4, where it accelerated bacterial clearance.

Sahid et al. (2018) investigated the application of Channa striatus spray on wound in patients who underwent clean elective surgery, and found significant differences in the visual analogue cosmetic score, Vancouver scar scale, visual analogue pain score, and wound evaluation scale between treatment and placebo groups. Susibalan et al. (2018) reported improvement in nasal blockage, nasal and eyes itchiness, and general symptoms among allergic rhinitis subjects who took 500 mg per day of Channa striatus tablet for six weeks. Serum Ig E was also
Table 3. Studies of Channa striatus in humans.

<table>
<thead>
<tr>
<th>No.</th>
<th>Author and year</th>
<th>Study target / target population</th>
<th>Channa striatus dosage</th>
<th>Intervention</th>
<th>Outcome measure</th>
<th>Main finding</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Azidah et al. (2017). A randomised, double-blind, placebo-controlled 3-arm trial. n = 120 primary knee osteoarthritis patients. Six months of intervention: Placebo, Channa striatus 500 mg, and Channa striatus 1,000 mg.</td>
<td>A randomised, double-blind, placebo-controlled study.</td>
<td>500 and 1,000 mg/day</td>
<td>Consumption of Channa striatus supplement for the Channa striatus group and corn starch capsule for the placebo group for 6 months.</td>
<td>WOMAC pain score, WOMAC stiffness score, WOMAC physical function score, analgesic score, and serum COMP.</td>
<td>Pain score markedly decreased in all treatment groups (Channa striatus 1,000 mg, 52.5%; and Channa striatus 500 mg, 49.2%) after six months treatment duration compared to placebo (30.4%). Channa striatus 1,000 mg (p < 0.05) and Channa striatus 500 mg (p < 0.05) had significantly higher value compared to the placebo group. In addition, the physical function score was significantly lowered in the Channa striatus 1,000 mg (p < 0.05) and Channa striatus 500 mg (p < 0.05) compared to the placebo subjects. No significant difference in analgesic scores and serum COMP within group analysis.</td>
<td>Both doses of Channa striatus showed similar efficacy and were more effective than placebo in treating the symptoms of knee osteoarthritis.</td>
</tr>
<tr>
<td>2</td>
<td>Bakar et al. (2015).</td>
<td>A randomised, double-blind, placebo-controlled study. n = 66 women after LSCS. Six weeks of intervention: placebo and Channa striatus group.</td>
<td>500 mg/day</td>
<td>Channa striatus group consumed 500 mg daily of Channa striatus tablet, and the placebo group consumed 500 mg daily of maltodextrin for six weeks from three days after LSCS.</td>
<td>Pulsatility index (PI), Resistive index (RI) of the uterine, and superficial skin wound arteries.</td>
<td>There were no significant differences in PI and RI between Channa striatus and the placebo group. However, the anterior posterior (AP) measurements of the uterus on the longitudinal (p < 0.05) and oblique transverse plane (p < 0.001) were significantly lower in the Channa striatus group compared to the placebo group.</td>
<td>Daily intake of Channa striatus supplement results in marked differences compared to placebo in terms of uterine involution and recovery of women in post LSCS.</td>
</tr>
<tr>
<td>3</td>
<td>Ma’lufi et al. (2019). Channa striatus (Ran Gabus) extract and the acceleration of tuberculosis treatment: a true experimental study.</td>
<td>The new positive pulmonary tuberculosis patients were voluntarily involved and randomised into the control and intervention group (n = 200).</td>
<td>500 mg/day</td>
<td>The control group performed standard antibiotic treatment and placebo supplementation, while the intervention group performed not only antibiotic treatment for TB but also Channa striatus supplementation for four weeks.</td>
<td>Sputum test of tuberculosis</td>
<td>There was a significant difference between Channa striatus supplementation and the acceleration of tuberculosis treatment among patients at week 3 (p < 0.05). At week 4, respondents classified in the negative category of tuberculosis level in the intervention group is higher than the control group.</td>
<td>Channa striata in this study significantly related to the acceleration of tuberculosis recovery.</td>
</tr>
<tr>
<td>4</td>
<td>Sahid et al. (2018). Snakehead consumption enhances wound healing? From tradition to modern clinical practice: a prospective randomised controlled trial.</td>
<td>A randomised, double-blind, placebo-controlled study. n = 81 patients underwent clean elective surgery. Six weeks of intervention: treatment group and placebo group.</td>
<td>unknown</td>
<td>The treatment group was sprayed with Channa striatus extract, and the placebo was sprayed without Channa striatus extract daily for six weeks.</td>
<td>Visual analog cosmetic score (VACS), Vancouver scar scale (VSS), visual analog pain score (VAPS), and wound evaluation scale (WES).</td>
<td>There was a significant difference in VAPS (p < 0.05), VACS (p < 0.001), VSS (p < 0.05), and WES (p < 0.05) between treatment and placebo group.</td>
<td>Application of Channa striatus extracts sprayed on clean wounds showed a significantly better pain score result and cosmetic outcome compared to placebo.</td>
</tr>
<tr>
<td>5</td>
<td>Shafii et al. (2017). Changes in the inflammatory markers with supplementation of Channa striatus extract in post lower segment caesarean section.</td>
<td>A randomised, double-blinded, placebo-controlled study. n = 60 patients who undergone LSCS. There were Channa striatus group and placebo group.</td>
<td>Channa striatus group consumed 500 mg daily (2 capsules) of freeze-dried Channa striatus extract, and the placebo group consumed 500 mg daily (2 capsules) of maltodextrin per day for three days.</td>
<td>High sensitivity C-reactive protein (hsCRP), total white cell counts (TWCC), and platelets count. Within Channa striatus group, there were significant reduction in hsCRP (p < 0.001) and TWCC (p < 0.001) whereas platelet counts increased significantly (p < 0.001). A similar pattern of changes was observed within the placebo group. However, group comparison at day 3 reported no significant difference in hsCRP, TWCC, and platelet count between Channa striatus and placebo groups.</td>
<td>There were no significant differences in the inflammatory markers during wound healing in post LSCS women for three days.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Susibalan et al. (2018). Efficacy of snakehead fish (Channa striatus) in subjects with allergic rhinitis: a randomised controlled trial.</td>
<td>A randomised, double-blind, placebo-controlled trial. n = 70 subjects with allergic rhinitis. Six weeks of intervention: Channa striatus group and placebo group.</td>
<td>Channa striatus group orally administered 500 mg daily of freeze-dry Channa striatus extract, and the placebo orally took 500 mg daily maltodextrin for six weeks.</td>
<td>Allergic rhinitis symptoms (nasal symptoms and non-nasal symptoms) and serum Ig E. Channa striatus group showed significant improvement in nasal blockage (p < 0.05), nasal itchiness (p < 0.05), eye itchiness (p < 0.001), and general symptoms (p < 0.05) compared to the placebo group. Meanwhile, serum Ig E showed significantly lowered in the Channa striatus group compared to the placebo. There were no significant differences between the groups in terms of nasal discharge, sneezing, palate itchiness, and smell score.</td>
<td>Channa striatus has a beneficial role in improving nasal symptoms and reduction in serum Ig E in allergic rhinitis patients.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Wahab et al. (2015). The effect of Channa striatus (Haruan) extract on pain and wound healing of post-lower segment caesarean section women.</td>
<td>A randomised, double-blind, placebo-controlled study. n = 76 subjects with post lower segment caesarean section women. Six weeks of intervention: treatment group and placebo group.</td>
<td>The treatment group orally took 500 mg daily of freeze-dried Channa striatus extract, and the placebo group consumed 500 mg daily maltodextrin for six weeks.</td>
<td>Wound evaluation scale (WES), visual analogue scale (VAS) scores, patient satisfaction score (PSS), and safety profile. There were significant differences in VAS and PSS in the treatment group compared to placebo (p < 0.001). However, there were no significant differences in postoperative pain, WES, and safety profile between the groups. Six weeks of supplementation of 500 mg of Channa striatus extract showed marked differences in wound cosmetic appearance, patient’s satisfaction, and is safe for human consumptions.</td>
<td>LSCS = lower segment caesarean section; WOMAC = The Western Ontario and McMaster Universities Arthritis Index; COMP = cartilage oligomeric matrix protein; PI = pulsatility index; RI = resistive index; VACS = visual analog cosmetic score; VSS = Vancouver scar scale; VAPS = visual analog pain score; WES = wound evaluation scale; and hsCRP = high sensitivity C-reactive protein.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
found to be lowered in the treatment group as compared to a placebo group.

Studies methodological quality
Out of the 20 studies, 13 animal studies were not scored using the PEDro scale since there was no randomisation in animal studies. The average score obtained was 9.3 for the remaining seven studies (Table 2 and 3).

Discussion
Effects of Channa striatus on wound healing
Seven studies had reported on wound healing; three studies were on humans, while the other four studies were on animals. The studies on humans were conducted on women with post LSCS (Bakar et al., 2015; Wahab et al., 2015) and patients who underwent clean elective surgery (Sahid et al., 2018). Meanwhile, the studies on animals were conducted on rats with excision wounds (Baie and Sheikh, 2000b), incision wounds (Baie and Sheikh, 2000a; Laila et al., 2011), and wound creation on lower lips (Oentaryo et al., 2016).

Wound healing is a complex process involving several overlapping stages that include inflammation, granulation tissue formation, reepithelialisation, matrix formation, and scar contraction with remodelling. The collagen determines strength and structure in normal tissues. Therefore, collagen is one of the essential components contributing to the tensile strength of the wounded skin (Laila et al., 2011). According to Steed (2003), adequate nutrition intake is required to enhance fibroblast cell proliferation to produce collagen fibre network in wound healing.

Consumption of Channa striatus supplement was beneficial for wound cosmetic enhancing and wound healing processes. According to Baie and Sheikh (2000a), the two components in Channa striatus, which are amino acids (such as glycine) and fatty acids (such as arachidonic acid), have been implicated in enhancing wound healing by the initiation of a series of mechanisms involving collagen remodelling, wound reepithelialisation, and induction of wound contraction. Glycine is the most important component of human skin collagen, and combines with aspartic and glutamic acid which act synergistically with the presence of other essential amino acids such as proline, alanine, arginine, leucine, isoleucine,
phenylalanine, and methionine to form a polypeptide that is responsible for tissue repair and healing (Baie and Sheikh, 2000a; Witte and Barbul, 2002; Shafri and Abdul Manan, 2012; Wahab et al., 2015).

After delivery, the collagen content of the uterus rapidly decreases, which is a noticeable feature of post-partum involution. Most of the collagen bundles are degraded extracellularly (Roh et al., 2000). A study done by Bakar et al. (2015) found that *Channa striatus* extract consumption increased the uterus involution rate by enhancing the wound healing process and increasing the contractile activity of the uterus. According to a study done by Baie and Sheikh (2000a), *Channa striatus* extract increased the rate of the wound healing process by increasing the tensile strength of the wound. This finding is in line with the study done by Laila et al. (2011), in which they mentioned that an increase in tensile strength could be related to the collagen structure changes on that wound, which depends on the high-level amount of specific amino acids such as glycine and fatty acids such as arachidonic acid present in the *Channa striatus* extract. According to Monaco and Lawrence (2003), after collagen molecules are formed, they are secreted into the cells’ wound site to become cross-linked, thus forming fibres.

The wound healing process can also be enhanced by increasing the number of fibroblasts (Oentaryo et al., 2016). Fibroblasts enter the wound area two to five days after an injury occurred. Fibroblasts begin to secrete collagen at the end of the first week for reinstating the tensile strength of the wound (Pasha et al., 2015). A previous study by Oentaryo et al. (2016) reported that an increase in the number of fibroblasts is due to the effects of content in the *Channa striatus* extract. The authors also mentioned that copper (Cu) content in the extract triggered the increased number of fibroblasts. The proliferation of fibroblasts in the wound area triggered by Cu plays a vital role in the growth and replication of cells. This is in line with Siswanto et al. (2016), which mentioned that albumin, zinc (Zn), copper (Cu), and iron (Fe) found in the *Channa striatus* extract are important substances for the wound healing process.

Channa striatus exhibits an antidepressant-like effect

The mechanism of antidepressant effect may be mediated by an increase in plasma corticosterone and interleukin-6 in the hippocampus and prefrontal cortex, and a decrease in monoamines and nuclear factor-kappa B (NF-kB) in the prefrontal cortex (Koo et al., 2010). A study done by Shukkoor et al. (2017) reported that lipid extract with the dosage of 125 and 500 mg/kg/day had decreased the level of plasma corticosterone. Their earlier study supported this finding. The authors mentioned that the *Channa striatus* lipid extract exhibited a significant effect on the hypothalamic-pituitary-adrenal axis, mainly by decreased level of plasma corticosterone.

Monoamines are believed to be linked with depression. Elhwuegi (2004) and Krishnan and Nestler (2008) mentioned that monoamines such as noradrenaline, serotonin, and dopamine are involved in depression pathogenesis. The administration of lipid extract on the depressed rats showed that it increased the serotonin level in the prefrontal cortex but not in the hippocampus, thus creating a dose-dependent relationship with hippocampal noradrenaline and both prefrontal cortex and hippocampal dopamine level (Shukkoor et al., 2016). This finding implied that *Channa striatus* lipid extract had a significant effect on brain monoamine levels.

It is also believed that chronic stress promotes the activation of NF-κB in response to inflammatory stimuli (Koo et al., 2010). Shukkoor et al. (2017) reported that consumption of 125, 250, and 500 mg/kg of Haruan lipid extract significantly decreased the NF-κB level in the prefrontal cortex due to the docosahexaenoic acid content. A study done by Shukkoor et al. (2016) combined CUMS with an intake of lipid extract of *Channa striatus*. That study found that lipid extract with 500 mg dose inhibited the activation of NF-κB and subsequently reduced the IL-6 in the prefrontal cortex and increased the serotonin level. This finding is in line with Zúñiga et al. (2011) which mentioned that ω-3 fatty acids inhibited the NF-κB.

Effects of *Channa striatus* on anti-inflammatory

A study by Isa et al. (2016) found that the application of Haruan cream could reduce the thickness of mouse ear, down-regulation of TNF-α gene expression level, and suppression of histological features of cutaneous inflammation. However, there were no significant changes found in inflammatory markers with the consumption of 500 mg *Channa striatus* due to the short period of consumption, i.e., three days (Shafii et al., 2017).

Zuraini et al. (2006) mentioned that the DHA content in Haruan contributed to the anti-inflammatory mechanism. Moreover, DHA also inhibits the production of inflammatory mediators such as TNF-α (James et al., 2000; Isa et al., 2016). Abedi et al. (2012) mentioned that the bioactive substances in *Channa striatus* cream such as linoleic acid, oleic acid, and stearic acid could give an anti-inflammatory effect that suppresses the myeloperoxidase (MPO) activity (pro-inflammatory mechanism).
enzyme) during inflammation.

Effects of Channa striatus on human diseases

Tuberculosis (TB), although largely a curable disease, remains a major cause of morbidity and mortality worldwide. There were nine million new cases and 1.4 million deaths in 2010 (WHO, 2013). According to the study done by Ma’rufi et al. (2019), consumption of *Channa striatus* for four weeks showed a significant effect on the acceleration of tuberculosis recovery among patients. The extract of *Channa striatus* consists of a high amount of amino acids and fatty acids which could control the antifungal activities in a restricted spectrum (Mat Jais et al., 2008), and possessed a concentration-dependent antinociceptive activity (Zakaria et al., 2007).

Allergic rhinitis (AR) is an inflammatory disorder of the nasal mucous membrane that can be characterised by nasal obstruction, watery nasal discharge, pruritus, and sneezing (Blaiss et al., 2018). A study done by Susibalan et al. (2018) reported that the consumption of 500 mg/day of *Channa striatus* for six weeks resulted in improvement in nasal blockage, nasal itchiness, eye itchiness, and general symptoms. *Channa striatus* extract elicited beneficial effects on AR through its anti-inflammatory properties (Abedi et al., 2012) and antioxidant properties (Radzak et al., 2014). This finding is in line with a previous study done by Thien et al. (2002), which found that the content of omega-3 fatty acids in the *Channa striatus* could reduce inflammation of airways and bronchoconstriction.

Knee is the most affected joint associated with osteoarthritis (OA). Azidah et al. (2017) found that the consumption of 500 and 1,000 mg/day of *Channa striatus* for six months in knee OA patients showed significant improvement in OA symptoms. This finding was supported by Kadir et al. (2014) which reported that the pain and symptoms of knee OA patients were significantly improved in the *Channa striatus* group as compared to the placebo group. *Channa striatus* has been reported to elicit anti-inflammatory effects on OA. Isa et al. (2016) mentioned that the EPA and DHA found in the *Channa striatus* have involved with the anti-inflammatory action by reducing the pro-inflammatory production. Moreover, the high amount of amino acids in *Channa striatus* could promote collagen remodelling by synthesising protein linking (Baie and Sheikh, 2000a; 2000b) which is important in the healing process and tissue repairing.

Limitation of this review

This systematic review only examined publications from the years 2000 to 2019, and only those in the English language were considered. Hence, there are possibilities that few related publications might have been excluded.

Conclusion

This review reported seven studies that have investigated the effects of *Channa striatus* on wound healing. Three studies investigated the antidepressant-like effects with consumption on *Channa striatus*, and another three studies were on anti-inflammatory effect. Meanwhile three studies have reported the effects of *Channa striatus* on diseases. It can be concluded that *Channa striatus* elicits a positive effect on the wound healing process, enhanced antidepressant-like, and anti-inflammatory effect due to its high content of amino acids and fatty acids.

Acknowledgements

The research team would like to express their special thanks and gratitude to Universiti Sains Malaysia which financially contributed to the completion of this review.

References

Pasha, M., Huin, R. and Hassan, S. 2015. The influence of oral and topical *Channa striatus* on laparotomy wound healing in malnourished...

