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The present work investigated the potential application of a portable and low-cost 

spectroscopic technique to predict the soluble solid content (SSC) for determining the 

maturity level of watermelons. A total of 63 watermelon samples were used in the present 

work, representing three different maturity levels: unmatured, matured, and over-matured. 

Before spectral acquisition, each watermelon sample was cut into half, producing 126 fruit 

portions. Visible shortwave near infrared (VSNIR) spectrometer was used to record the 

spectral data from the skin surface of each portion. The SSC of each portion was measured 

using a digital refractometer. Partial least square (PLS) regression method was used to 

establish both calibration and prediction models to predict the SSC values from the 

watermelon samples. Support vector machine (SVM) classifier was used to categorise 

spectral data into the respective maturity levels. Results showed that the coefficient of 

determination (R2) values for calibration models of unmatured, matured, and over-matured 

were 0.65, 0.81, and 0.78, respectively. For the prediction model, the R2 values for 

unmatured, matured, and over-matured were 0.60, 0.74, and 0.76, respectively. The SVM 

yielded good classification accuracy of 85%. The present work demonstrated that the 

proposed spectroscopic method could be applied to predict and classify the maturity level 

of watermelons based on their skin condition. 
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Introduction 

 

Watermelon (Citrullus lanatus) is a popular 

edible fruit. It is usually eaten fresh, or processed into 

fruit juice since it contains approximately 93% water 

of its total mass. Globally, watermelon is the most 

produced fruit, with an average annual production of 

93.7 million tons (Liu et al., 2018). It is a nutritional 

fruit which contains vitamins, mineral salts, 

antioxidant, lycopene, and specific amino acids 

(Sultana and Ashraf, 2019). The demand for 

watermelon is always high due to its nutritional value 

and delicious taste. 

For the commercial market, watermelon with 

good quality is always preferred by consumers. The 

external quality attributes of watermelon such as 

shape, weight, and rind and flesh colours are 

important preference components for consumers to 

purchase the fruit (Kyriacou et al., 2018). Recently, 

in addition to the external quality factors, consumers 

also consider the internal quality features such as the 

fruit's sugar and nutritional contents (Musacchi and 

Serra, 2018). Sugar content, which is commonly 

measured as soluble solid content (SSC) in °Brix 

value, is the best indicator for the internal quality of 

watermelon, and strongly related to the fruit’s 

maturity level (Kyriacou et al., 2018). 

Watermelon should be harvested as soon as it 

reaches maturity to preserve its premium quality. 

Therefore, the determination of the optimum maturity 

level of watermelon is a critical task during harvest. 

Conventionally, the maturity level of watermelon is 

estimated by farm workers based on several indices 

such as the vine tendrils which should begin 

browning and drying, the skin with less glossiness, 

appearance of ground spot yellowness, and 
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production of a dull sound when the fruit is thumped 

(Sun et al., 2010). However, these manual 

assessments are time-consuming, tedious, less 

efficient, and subjected to human errors (Ali et al., 

2017). Therefore, an application of fast, automatic, 

and non-destructive technology to determine the 

maturity level of watermelon is critically needed.  

Numerous non-destructive methods for 

determining the internal quality attributes of 

watermelons have been published, including 

electrical and magnetic (Kato, 1997; Nelson et al., 

2007), X-ray (Tollner, 1993), acoustic and dynamic 

(Abbaszadeh et al., 2015), and near-infrared 

spectroscopy (Jie et al., 2014; Tamburini et al., 2017). 

Even though these laboratory methods were accurate 

and reliable, they are typically fragile and expensive, 

thus requiring careful handling, and are not suitable 

for assessing maturity level of watermelon in situ. 

Currently, due to its excellent measurement 

performance, visible and shortwave near-infrared 

(VSNIR) spectroscopy has gained attention as a low-

cost and non-destructive sensing technique for 

assessing the internal quality of fruits such as 

mandarins (McGlone et al., 2003), mangoes 

(Saranwong et al., 2004), kiwifruits (Clark et al., 

2004), apples (Mendoza et al., 2015), pineapples 

(Chia et al., 2012), and sugarcanes (Nawi et al., 

2013). These studies employed VSNIR spectroscopy 

due to its ability to perform rapid non-destructive 

measurement, and measure multiple parameters 

concurrently (Alfatni et al., 2013). However, the 

application of this technology for predicting SSC 

values of watermelon has never been conducted 

before. 

The use of VSNIR spectroscopy will generate 

many raw spectral data. Therefore, chemometric 

analysis is required to remove unwanted and 

irrelevant information from the raw spectral data 

before developing regression and classification 

models. Data classification is an important procedure 

in chemometric analysis to reduce data 

dimensionality, optimise data processing time, and 

enhance data generalisation by reducing prediction 

and over-fitting (Kumar et al., 2016). Common 

classification algorithms in agricultural research 

include support vector machines (Jie et al., 2019), 

artificial neural networks (Nawi et al., 2013), finite 

element model (Abbaszadeh et al., 2014), and K-

nearest neighbour method (Abbaszadeh et al., 2015). 

Support vector machine (SVM) is one of the most 

 

popular classification methods, and greatly 

recognised due to its excellent performance in dealing 

with high-dimensional data (Khaled et al., 2018).  

Therefore, the objectives of the present work 

were (1) to investigate the possibility of using VSNIR 

spectroscopy to predict SSC levels of watermelon 

samples using PLS regression model, and (2) to 

classify spectral data of watermelon samples into 

three maturity levels using SVM. 

  

Materials and methods 

 

Sample preparation 

Sixty-three watermelon samples of Red 

Seedless variety representing three different maturity 

levels, namely unmatured (21 samples), matured (21 

samples), and over-matured (21 samples) were 

purchased from a local farm in Bangi, Selangor, 

Malaysia. The watermelons were harvested by a well-

trained farm worker at 60, 65, and 70 days after 

planting to represent unmatured, matured, and over-

matured categories, respectively. Sixty-five days 

after planting was an optimal harvest date for this 

variety (Ali et al., 2017). The samples were then 

cleaned, weighed, and transported directly to the 

laboratory.  

Prior to sample preparation, the samples were 

stored in a chiller at 8°C and 85% relative humidity. 

The watermelon samples were placed on a bench until 

they reached thermal equilibrium. Paper towels were 

used to remove dirt and moisture from the skin 

surface of the samples before the measurement was 

performed. Kato (1997) reported that the sweetness 

distribution of the flesh varies from the centre to the 

rind of the watermelon. Therefore, to investigate the 

variation of skin characteristics and sugar 

distribution, the watermelon samples were cut into 

halves, thus producing 126 sub-sample portions. 

Then, to average this variation, each portion was 

divided into top, middle, and bottom (Figure 1). Three 

measurements on spectra and SSC were performed on 

each section before they were averaged for further 

analysis. The average value of the spectral and SSC 

data from these three portions was used to determine 

each portion's spectral and CCS value.  

 

Reflectance measurement  

The spectral data of each watermelon portion 

was collected using a visible near-infrared (VSNIR) 

spectrometer (Ocean Optic HR4000, Ocean Optics 
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Figure 1. Division of three sections (top, middle, and 

bottom) on a portion of watermelon sample. 

 

Inc., Dunedin, Florida). This miniature fibre optic 

spectrometer came with a charge-coupled device 

(CCD) detector. This spectrometer worked in the 

wavelength region ranging from 200 to 1100 nm with 

an optical resolution of 0.025 nm. A tungsten halogen 

light source (HL-2000 12VDC (15 W), Ocean Optics 

Inc., USA) was used to illuminate both visible and 

NIR regions during the measurement.  

A measuring box (1 × 1 × 1 m) with light-proof 

characteristics was developed and utilised to block 

the light source, sensor, and samples from ambient 

light. All surfaces inside the box were also covered 

with black cloth to reduce the influence of 

background surfaces on spectral data (Wu et al., 

2008). The scanning distance was kept constant at 2 

cm by placing the probe on a probe holder at a 90° 

angle. The spectral measurement of watermelon was 

collected from the outer skin surface of each portion. 

The reflectance measurement technique was chosen 

because this technique did not require any contact 

with the samples. A white reference (WS-1 Diffuse 

Reflectance Standard) and black reference were 

recorded prior to spectral measurement. Spectrasuite 

software (Ocean Optic Inc.) was installed in a 

computer for collecting, observing, and processing 

the spectral data.  

 

Measurement for sugar content 

After the spectral measurement, each section 

from the individual watermelon portion was squeezed 

to extract the juice samples. The SSC value of each 

section was measured using a digital refractometer 

(Pal-1, Atago Co, Tokyo, Japan) three times, and 

averaged.  

Pre-processing of spectral data 

The purpose of data pre-processing is to obtain 

the highest correlation between concentration values 

and spectral data, as well as to improve spectral 

features and eliminate irrelevant variation and noise 

in the data (Jayaselan et al., 2018). The spectral data 

were pre-processed before using partial least square 

(PLS) regression modelling to obtain better 

prediction accuracy. Different pre-processing 

techniques which could affect the performance of the 

PLS models were evaluated in the present work 

including smoothing by moving average, 

multiplicative scatter correction (MSC), baseline 

offset correction (BOC), first and second derivatives, 

standard normal variate (SNV) transformation, and 

mean normalisation. Preliminary trials found that 

BOC was the best pre-processing technique for the 

present work. The pre-processing treatment was 

performed using Unscrambler X version 10.3 

software (CAMO Process, AS, Oslo, Norway). 

 

Development of calibration and validation models 

Principal component analysis (PCA) was 

applied before establishing the PLS regression 

models to reduce the dimensionality of spectral data, 

remove the noise, and determine the optimum number 

of latent variables (Wu et al., 2008). PCA is a 

chemometric method that searches for directions in 

multivariate space, and uses them as a new axis 

known as principal component (PCs) which can be 

used as new variables to represent the original data. 

PCA was also used to identify the potential spectral 

outliers. The spectral outliers were identified and 

eliminated before developing the PLS model. The 

outliers were identified from the samples which 

showed an apparent residual variance in the influence 

plot. Based on the spectral data from 126 watermelon 

samples, six spectral data represented six samples 

(5%) were identified as outliers, and they were 

removed from the analysis. Hence, only 120 spectral 

data and SSC values were used for further analysis.  

The spectral data were analysed using the PLS 

regression method to establish calibration and 

prediction models. In establishing the PLS, the PCs 

were applied to simplify the relationship between the 

response and predictors variables. To determine the 

optimum number of PCs, full cross-validation (leave-

out) was applied to prevent the over-fitting of the 

model. Ten PCs were used for the analysis. Both PCA 

and PLS modelling were run using Unscrambler X 

version 10.3 software (CAMO Process, AS, Oslo, 
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Norway). Before calibration, samples were divided 

into two sets; 75% of the samples were applied to 

establish the calibration model. The remaining (25%) 

samples were used to validate the predictive equation 

(validation set). In the validation set, one out of four 

samples was selected from the whole set to cover the 

whole range of SSC values in every set.  

Root mean square error of calibration 

(RMSEC) and the coefficient of determination for 

calibration (R2) were calculated to measure the 

performance of PLS model during calibration. In 

contrast, the root means square error of prediction 

(RMSEP) and the coefficient of determination for 

prediction (R2) were calculated to measure the 

performance of validation samples. The models that 

yielded a low RMSEC and RMSEP, and a high R2 for 

both calibration and prediction models may be 

considered a good regression model.  

Classification using support vector machine  

Classification algorithm based on SVM has 

been widely adopted in spectroscopic measurement. 

SVM is a machine-learning technique based on 

statistical-learning theory which transforms initial 

input space into higher-dimensional feature space in 

searching for an optimal separating hyperplane 

(Kavzoglu and Colkesen, 2009). The performance of 

the SVM classifier depends on the kernel functions 

such as linear, sigmoid, polynomial, and radial basis 

function (RBF). The grid search technique was used 

to obtain the optimum performance of the model 

using the RBF modelling. The RBF modelling was 

chosen in the present work due to its superiority. For 

the classification task, the optimal parameter used in 

the RBF for a kernel width (γ) was 10, while the 

regularisation (C) parameter was 16. 

SVM algorithm was employed to classify the 

spectral data of watermelon samples into three 

different maturity levels. After removing the outliers, 

a total of 59 samples (21 unmatured samples, 18 

matured samples, and 20 over-matured samples) were 

used as inputs for SVM classification. From the 

whole data samples, 65% were applied for training, 

while the remaining 35% were applied for prediction. 

Three optimum wavebands at 550, 680, and 760 nm, 

which could be correlated to lycopene, chlorophyll, 

and third overtone of sugar, respectively, were 

selected for the classification modelling. 

In the present work, an analysis software 

(Waikato Environment for Knowledge Analysis 

(WEKA), version 3.6, Hamilton, New Zealand) was 

used to develop SVM algorithm and perform feature 

selection (Khaled et al., 2018). Feature selections are 

commonly applied to reduce data dimensionality 

because they reduce the data's complexity, improve 

prediction performance, and are easy to interpret. The 

optimum wavebands of the spectrum selection may 

also decrease the volume of processed spectrum data, 

and increase the classification efficiency. For the 

determination of statistically significant differences 

between two data set of the samples, analysis of 

variance (ANOVA) was performed using the SAS 

software (Version 9.4, SAS Institute, Cary, NC, 

USA). 

 

Results and discussion 

 

Statistical characteristic and spectral pattern   

Table 1 shows the statistical characteristics of 

SSC values for the watermelon samples at different 

maturity levels. The SSC value in watermelon was 

influenced by the level of its maturity (Kyriacou et 

al., 2018). The matured watermelons contained the 

highest SSC value (7.13 °Brix) while the unmatured 

samples contained the lowest (6 °Brix). As the fruit 

maturity level progressed and sugar content 

increased, SSC also increased due to the hydrolysis of 

sucrose to invert sugars (Salamat et al., 2013). The 

result of the ANOVA test confirmed that there was a 

significant difference in SSC at different maturity 

levels at p < 0.05, based on the least significant 

difference (LSD) test. 

 

Table 1. Statistical characteristics of the SSC (°Brix) 

value for watermelon at different maturity levels. 

Maturity 

level 
Max. Min. Mean Std. Dev 

Unmatured 7.18 4.5 6.00 0.66 

Matured 8.10 5.61 7.13 0.65 

Over-matured 8.47 5.00 6.71 0.68 

Std. Dev. = standard deviation. 

 

Typical reflectance spectra for the watermelon 

samples at different maturity levels are presented in 

Figure 2. It was observed that all curves which 

represented different maturity levels exhibited similar 

patterns with varying values of reflectance. A graph 

with a similar pattern for apples was reported by Liu 

and Ying (2005). From Figure 2, prominent peaks are 

seen at 550, 675, and 760 nm, all of which could be 

related to the maturity level of the watermelon. For 

example, the peak around 675 nm could be correlated 

to chlorophyll content in the skin of watermelon, 
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while significant absorption around 760 nm could be 

correlated to sugar content which was represented by 

a stretching of the third overtone of O-H (Merzlyak et 

al., 2003). Typically, unmatured fruit had a higher 

chlorophyll content than matured fruit because the 

chlorophyll content will decrease as the fruit ripens.  

The absorption pattern at 760 nm indicated that 

the watermelon has different SSC values at different 

maturity levels. These differences were because SSC 

will increase as the maturity increases. An increase in 

SSC was due to the accumulation of carbohydrate to 

reducing sugar and decreasing the acidity (Oliveira et 

al., 2015). Another pronounced peak at 550 nm can 

be used to measure the presence of lycopene content 

(red pigment) of the watermelon (Sánchez et al., 

2014). This lycopene content varies at different 

maturity levels since the concentration of lycopene is 

low during the early stage of fruit development, and 

increases as the fruits ripen. Therefore, it is envisaged 

that the level of chlorophyll, SSC, and lycopene can 

be used to predict the maturity of watermelon.  

 

 
Figure 2. Typical reflectance spectrum for watermelon samples at different maturity levels. 

 

Prediction of SSC from watermelon samples   

In the present work, the BOC technique was 

used to pre-process the spectral data before they were 

used in the PLS regression method. PLS regression 

method was applied in the development of the 

calibration and prediction models. The values of R2, 

RMSEC, and RMSEP were used to evaluate the 

performances of the models. Table 2 shows the 

performance of the calibration and prediction models 

in predicting SSC values to determine the maturity 

levels of the watermelon samples from the spectral 

data collected from the outer skin of the fruits. Table 

2 shows that the R2 values for prediction models of 

unmatured, matured, and over-matured were 0.60, 

0.74, and 0.76, respectively. These data indicated that 

the spectroscopic method could yield better 

prediction accuracy when it was used for matured and 

over-matured crops. This finding is logical since the 

PLS models were developed between spectral data 

and SSC. From the data, it can be said that unmatured 

watermelon contained less SSC as compared to 

matured watermelon.  

Table 2. Performance of the calibration and 

prediction models in predicting the SSC (°Brix) 

values at different maturity levels. 

Maturity 

level 

Calibration Prediction 

RMSEC 

(°Brix) 
R2 

RMSEP 

(°Brix) 
R2 

Unmatured 0.49 0.65 0.69 0.60 

Matured 0.30 0.81 0.34 0.74 

Over-matured 0.48 0.78 0.64 0.76 

 

From the reflectance data, the value of R2 for 

SSC attained in the present work was relatively better 

than that obtained by Jie et al. (2014), who reported 

R2 value of 0.66 in predicting SSC from watermelon 

samples using the transmittance technique. The 

prediction accuracy reported in the present work for 

matured (R2 = 0.74) and over-matured (R2 = 0.76) 

categories was also higher than the prediction 

accuracy (R2 = 0.71) reported by Tamburini et al. 

(2017) who employed an online NIR spectrometer in 

the range of 700 - 1900 nm to predict total soluble 
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solids of intact melons. The results reported herein 

were also better than that published by de Oliveira et 

al. (2014) who used NIR spectroscopy to measure the 

SSC of passion fruit with R2 of 0.63. However, the 

results reported herein was lower than the result (R2 = 

0.93) reported by Khodabakhshian et al. (2017) in 

estimating the sugar content of pomegranate. In 

conclusion, the present work demonstrated that the 

level of SSC in watermelon could be predicted using 

a VSNIR spectrometer.  

 

Maturity classification by support vector machine 

(SVM) 

Table 3 shows the classification results 

generated by SVM classifier. The model showed an 

excellent overall prediction accuracy of 85%. Table 3 

also shows that two main classes representing over-

matured and unmatured levels achieved 80 and 100% 

accuracy, respectively. However, the matured level 

yielded a lower accuracy of 75%. A lower accuracy 

occurred because this maturity level had SSC values 

that were borderline between other maturity levels. 

Overall, this finding was better than the result 

reported by Baki et al. (2010) who employed Multi-

Layer Perceptron (MLP) neural network for 

discriminating ripe and unripe watermelons with an 

accuracy of 77.3%. In another study, better accuracy 

of 86.96% for watermelon maturity classification was 

obtained when band magnitude vector (BMV) and 

probabilistic neural network (PNN) methods were 

employed (Zhang et al., 2010). In conclusion, the 

results reported herein implied that the VSNIR 

spectroscopy in combination with SVM classifier 

could be a promising technology to classify maturity 

levels of watermelon non-destructively.  

 

Table 3. Classification results using SVM. 

Maturity 

level 

No. of 

sample 

No. of correctly 

classified 

sample 

Prediction 

accuracy 

(%) 

Unmatured 21 21 100 

Matured 18 14 75 

Over-matured 20 16 80 

Overall accuracy (%) 85 

 

Conclusion 

 

The low-cost, portable, and non-destructive 

spectroscopic method was successfully employed in 

the present work to evaluate SSC from watermelon 

 

samples at different levels of maturity. Results 

showed that the R2 values of the prediction model for 

unmatured, matured, and over-matured were 0.60, 

0.74, and 0.76, respectively. The SVM classifier used 

to classify SSC data into three maturity categories 

gave a good classification performance, ranging from 

75 to 100% accuracy, with an overall accuracy of 

85%. Results also indicated that the proposed method 

was feasible for predicting and classifying the 

maturity level of the watermelons based on SSC 

values. The VSNIR spectroscopy technique 

employed in the present work could also be 

potentially applied for an automated and online 

grading or sorting system. The accuracy of the 

prediction model could be increased by increasing the 

number of samples. In contrast, the use of the deep 

learning method might increase the accuracy of the 

classification result.  
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