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Fruit quality phenotyping is a bottleneck in plant breeding. The present work aimed to 

investigate the applicability of visible (Vis) and near-infrared (NIR) spectroscopy for 

quality evaluation in dry red chili powder. We constructed prediction models for the 

American Spice Trade Association (ASTA)-colour and the Scoville Heat Unit (SHU)-

pungency pepper traits using spectroscopy and multivariate statistical techniques. 

Predictive partial least squares (PLS) models were successfully achieved with high 

correlations (r) between the predicted and reference values for calibration and validation 

(r = 0.955 and 0.928 for ASTA-colour; r = 0.941 and 0.918 for SHU-pungency). 

Spectroscopy data from visible and short-wave radiation (Vis-SWNIR) provided the most 

robust (residual predictive deviation value) model for ASTA-colour (RPD = 2.84) and 

long-wave radiation (LWNIR) for SHU-pungency (RPD = 2.48). Spectral categories for 

wavelength range selection, variable importance for effective wavelength selection, and 

root mean press-statistic for factor selection were important criteria for PLS. Trait variance 

and distribution were also important criteria for the predictive capacity and power of the 

models. In conclusion, non-invasive spectroscopy was a promising tool in our study for 

dry red chili quality phenotyping. 
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Introduction 

 

Plant breeders must rapidly phenotype large 

numbers of plants to make selections. Plant 

phenotyping for fruit quality evaluation entails 

laborious post-harvest processing and biochemical 

laboratory analyses in addition to field phenotyping. 

Phenotyping, therefore, remains a bottleneck in the 

plant breeding pipeline for future breeding advances. 

Several high-throughput phenotyping tools have been 

investigated for plant growth and architecture 

phenotyping, including aerial- (i.e., drones, 

helicopters, aerostats) and ground-driven (i.e., 

tractors, vehicles, manual cameras) imaging-based 

remote sensing techniques (Furbank and Tester, 

2011; White et al., 2012; Araus and Cairns, 2014; 

Rebetzke et al., 2019). For fruit quality phenotyping 

which involves physical and chemical evaluation of 

fruits, the suitability of spectroscopy has been 

investigated as a non-invasive technique for various 

fruit and vegetable commodities: Cheng et al. (2004) 

for cucumber; Sánchez et al. (2012) for strawberry; 

Sun et al. (2012) for orange; Pissard et al. (2013) for 

apple; Maniwara et al. (2019) for purple passion fruit; 

Donis-González et al. (2020) for grape and peach; 

and Kaur et al. (2020) for tomato and pepper. 

Spectroscopic techniques study the absorption 

of energy from organic molecules in commodities in 

the electromagnetic spectrum regions of visible (380 

- 720 nm) and near-infrared (780 - 2500 nm) 
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wavelengths. Signals of major structures and 

functional groups of organic compounds are detected 

within this wavelength range when irradiated by NIR 

(Wang et al., 2015; Arendse et al., 2018). The 

resulting spectrum from NIR irradiation reflects some 

physical attributes and/or the chemical constitution of 

the biological sample. However, the spectrum is 

heavily dominated by interfering factors such as 

absorbance by water, wavelength-dependent light 

scattering, instrumental noises, and low signal-to-

noise ratio, thus obscuring the relevant information 

concerning fruit quality attributes (Nicolaï et al., 

2007; Wang et al., 2015). Multivariate statistical 

techniques (or chemometrics) are applied to extract 

useful spectral information using spectral pre-

processing treatments and regression methods 

(Rinnan et al., 2009) to build mathematical models 

that are predictive of product quality traits. 

Our project was an inter-collaborative study 

between East-West Seed (EWS) International, India 

and Thailand, and the Postharvest Technology 

Research Center of Chiang Mai University, Thailand 

to investigate the feasibility of VIS and NIR 

spectroscopy for fruit quality evaluation in dry red 

chili (syn. dry pepper) of India. Dry pepper breeding 

in India for improved varieties is of economic 

importance. India is one of the major exporters of dry 

pepper and its derived products to different countries 

including Malaysia, Bangladesh, Sri Lanka, and the 

United States of America, with a net value reaching 

$410 million (Reddy et al., 2014; 2015). The current 

chili hybrid seed market in India is approximately 50 

tons per year, with an estimated turnover worth $16 

million (Reddy et al., 2015).  

Pungency (or hotness) and colour (or redness) 

are two of the most desired red chili fruit quality traits 

in released cultivars of dry pepper. However, 

phenotyping (or quantification) of both traits requires 

laborious evaluations and biochemical analyses. 

Pepper pungency is typically quantified by the 

concentration of secondary metabolites known as 

capsaicinoids, which include compounds such as 

capsaicin, dihydrocapsaicin, and nordihydrocapsaicin 

(Srinivasan, 2016; Guzman and Bosland, 2017). 

Pepper pungency is measured in the Scoville Heat 

Unit (SHU) which indicates the number of times the 

substance must be diluted so that the pungency is not 

perceived. Pepper colour is quantified by the 

extractable colour or the colour compounds of 

exocarp (Ergüneş and Tarhan, 2006; Kim et al., 

2008). It is measured in the American Spice Trade 

Association (ASTA) colour value, which signifies the 

intensity of redness or its saturation. We focused on 

these two fruit quality traits in our study, and 

incorporated germplasm with diverse backgrounds 

including commercial hybrids, advanced lines, and 

doubled-haploid lines of the EWS-India dry pepper 

breeding program. 

  

Materials and methods 

 

Plant material and field design 

Samples (n = 180) representing biochemical 

variation in pungency and colour traits at the 

Aurangabad, India Research and Development 

(R&D) Station of EWS were selected. These samples 

encompassed F1 hybrids, accessions from doubled-

haploid (DH), and F3-F8 populations. The dried and 

ground products of these pepper samples were kept in 

4°C germplasm for the past six months to two years. 

A novel set of genetic material (n = 83) 

consisting of DH lines and commercial F1 hybrids 

was also included in the project. Plants were 

greenhouse-grown in June 2019, and field-

transplanted in July 2019 at the Mulani Farm of 

Aurangabad R&D Station into plots of five to ten 

plants per line. A few lines failed to germinate, 

resulting in a total of 79 lines. Plants were managed 

per farm guidelines. The phenotypic and yield data 

were collected by the breeding team as per routine 

work. The red fruits were harvested over two pickings 

at 111 and 147 days after transplant, respectively. 

Samples were dried in the sun for 10 - 15 days before 

further processing and analyses by the Aurangabad 

biochemistry laboratory. 

  

Pepper processing and biochemical data collection  

The dried pepper powder stored at 4°C for the 

180 selected samples from the germplasm collection 

was used for biochemical analyses. The 79 sun-dried 

pepper samples were further dried in an air oven 

before ground into fine powder using routine 

spice/coffee blenders. For colour extraction, 0.1 g dry 

pepper powder was extracted in 100 mL absolute 

acetone with a 16-h dark incubation at room 

temperature using the ASTA-20.1 method (ASTA, 

1986). The transparent extract of the samples was 

read against acetone reference at 460 nm using the 

UV-1800 Shimadzu Spectrophotometer with in-

house UVProbe-Photometric software for the 

collection of optical density absorbance values. The 

absorbance data were then converted into American 
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Spice Trade Association (ASTA) colour values 

(ASTA, 1986; Kim et al., 2008). 

For capsaicinoid extraction, 5 g dry pepper 

powder was extracted in 80 mL absolute ethanol with 

a Soxhlet apparatus for 3 h. Samples were cooled to 

room temperature, filtered using filter paper, and 

incubated at 4°C until high-performance liquid 

chromatography (HPLC) injection. Each sample was 

filtered into a 2-mL HPLC vial with a 0.45-μm filter 

and a 5-mL disposable syringe. Samples were read 

using the Prominence Shimadzu HPLC system 

equipped with a degasser, autosampler, column oven, 

LC Plus quaternary pump, and ultraviolet (UV) 

detector. The chromatographic conditions were Luna 

C18 column (particle size 5 μm, dimension 250 × 4.6 

mm) from Phenomenex (USA); column temperature: 

40°C; sample temperature: 20°C; sample volume: 20 

μL; UV detection wavelength: 280 nm; mobile phase: 

binary mixture acetonitrile-water at 60:40, v/v; and 

flow rate: 1 mL/min. Capsaicin, dihydrocapsaicin, 

and nordihydrocapsaicin were determined by 

comparison to an external pure capsaicin reference 

standard, 10 ppm in ethanol, injected under the same 

conditions. The compounds were identified based on 

the retention times measured under identical HPLC 

conditions, and they were quantified using the peak 

areas of each sample. The in-house HPLC software 

was used to convert the peak area data into the 

Scoville Heat Unit (SHU)-pungency values using the 

coefficients of the heat value for each individual 

compound (Todd et al., 1977; Sanatombi and 

Sharma, 2008; Othman et al., 2011). 

 

NIR data collection and pre-processing  

A NIRSystem 6500 Multi-Mode Analyser 

BenchTop (Foss NIRSystems, Silver Spring, USA) 

with specifics of the spinning module, rotating cup, 

and tungsten halogen lamp was used to collect the 

absorbance data for ground dry pepper samples. The 

in-house VISION software was used to collect the 

reference spectrum in an open chamber of the NIR 

apparatus at 24°C. Sample (5 g) spectra were 

collected at every 2.0 nm over the 400 - 2500 nm 

wavelength region. Each sample was measured once 

by the apparatus. The reference calibration was 

completed at every ten pepper samples. The 

absorbance data was exported into several pre-

processed spectral formats using the in-house 

software, including original, first and second 

derivative, standard normal variate (SNV), and 

 

multiplicative scatter correction (MSC). 

 

NIR model development, calibration, and validation  

The partial least squares regression (PLSR) 

algorithm built into the JMP v.10.0 software (SAS 

Institute Inc., Cary, NC, USA) was used for model 

calibration and validation using the original and pre-

processed spectral and trait data. PLSR predicts each 

trait vector Y from the spectral matrix X by modelling 

the shared structure between the two, and extracting 

a group of orthogonal latent variables (LV) (Nicolaï 

et al., 2007; Abdi, 2010). 

The spectral and trait data were randomly 

divided into calibration and internal validation sets of 

100 and 80 samples, respectively. The variable 

importance in projection (VIP) score, a weighted sum 

of squares of the PLSR-weights, was calculated using 

the JMP multivariate toolbox, which summarised the 

contribution a variable (wavelength) made to the 

calibration model (Eriksson et al., 2001; Nordey et 

al., 2017). Variables with a VIP score lower than 0.8 

were removed from the PLS model (Eriksson et al., 

2001). The total number of variables (or effective 

wavelengths) was optimised into PLS factors (max 

fixed as 15) by the minimum root mean predicted 

residual sum of squares (PRESS)-statistic with a 

leave-one-out cross-validation method (Wold, 1994; 

Maniwara et al., 2014). These factors or LVs were 

employed by the regression algorithm to model the 

relationship between the X matrix and Y vectors. 

The default PLSR statistics for evaluating 

model performance were calculated, including 

correlation coefficients of calibration (rcal) and 

validation (rval), and the root mean square errors of 

cross-validation (RMSECV) and prediction 

(RMSEP) (Wold et al., 2001; Nicolaï et al., 2007). 

Models with the highest correlation coefficients and 

the lowest errors were selected as optimal for ASTA-

colour and SHU-pungency traits. We used the 

optimal calibration model for each trait to predict the 

Y values of another 79 pepper samples (external 

validation set). Each model was assessed based on the 

correlation coefficient between the predicted values 

and measured values (rpre), the root mean square error 

of external prediction (RMSEEP), and the ratio of 

performance to deviation, known as the residual 

predictive deviation value (RPD) (Magwaza et al., 

2012; Olarewaju et al., 2019). Predictive and robust 

models were denoted by the highest prediction 

correlations and RPD values, and the lowest error 

values. 
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Results and discussion 

 

Biochemical phenotypic data analysis  

Pepper samples amongst initial calibration and 

validation datasets expressed phenotypic variation for 

ASTA-colour and SHU-pungency traits, thus 

indicating that these were good populations for NIR 

model development (Table 1). The mean biochemical 

data of each trait were significantly different among 

the three datasets (p-value < 0.0001). Additionally, 

the pooled data of each trait were normally distributed 

as illustrated in the distribution diagram. However, 

ASTA-colour data was more normal relative to SHU-

pungency, as more accessions than expected from the 

lower pungency tail were selected. When the data 

were re-calibrated (see next section), a greater 

distribution was observed for both traits, thus 

suggesting statistically reliable data for the second 

calibration. Sánchez et al. (2013) and Li et al. (2017) 

advised quality variation or a great standard 

distribution (σ) of samples as important criteria to 

produce robust, reliable, and reproducible prediction 

models. 

 

NIR spectral data characteristics and pruning 

windows 

Original NIR spectra of samples for VIS and 

NIR wavelengths are presented in Figure 1. The 

spectral data exhibited minimal spectral noise, 

uniformity in the NIR absorption patterns, and clear 

sample-specific variation as indicated by colour 

differences. As the NIR equipment collected data 

from visible and short-wave radiation (400 - 1098 

nm) to long-wave radiation wavelengths (1100 - 2498 

nm) for each sample, the instrument detector 

transitioned from silicon to lead sulphide, thus 

causing an abrupt depression in the NIR spectra. For 

further model development, the spectral data was 

divided into three categories, visible and short-wave 

radiation (Vis-SWNIR, 400 - 1098 nm), short-wave 

radiation (SWNIR, 800 - 1098 nm), and long-wave 

radiation (LWNIR, 1100 - 2498 nm) wavelength 

regions. 

 

Calibration, validation, and prediction of ASTA-

colour and SHU-pungency 

The ASTA-colour and SHU-pungency 

calibration models were independently developed 

using spectral data from each spectral category (Vis-

SWNIR, SWNIR, and LWNIR), as well as each pre-

processing treatment (original, first and second 

derivatives, MSC, and SNV). The ASTA-colour 

model calibrations and predictions resulted in a low-

high agreement between NIR predicted values and 

actual values (correlation coefficients (rs) of 0.10 - 

0.90). The most optimal model with the highest 

correlation and lowest error was achieved using Vis-

SWNIR spectral data and first derivative pre-

processing treatment with rcal and rval values of 0.909 

and 0.924, as well as RMSECV and RMSEP values 

of 9.43 and 8.49, respectively (Table 2, bold). 

Although predictions of 79 external validation 

samples using this optimal model resulted in high 

prediction correlation (rpre value of 0.890), a low 

number of extracted factors with the PRESS analysis 

(five PLS factors) and low prediction error (RMSEEP 

value of 16.26), the RPD value was only 2.18, thus 

indicating good approximate robustness and 

moderate reliability (Jiang et al., 2016). 

To further increase the model’s robustness of 

the Vis-SWNIR first derivative optimal PLSR for 

future predictions, the regression was calibrated again 

by adding 40 samples from the external prediction 

dataset to the former 100 samples, and leaving 39 

samples to validate the model together with the 

former 80 samples (Table 1). Consequently, the new 

calibration set consisted of 140 samples, and a new 

validation set consisted of 119 samples. Although the 

re-calibrated model elicited a higher PLS factor (nine 

factors) than the previous model, it provided high 

correlations of calibration and validation (rcal and rval 

values of 0.955 and 0.928, respectively) as well as 

low errors (RMSECV value of 10.08 and RMSEP 

value of 11.31), with a high RPD value of 2.84 

(Figure 2A and 2B). This model emerged to be more 

predictive, robust, and reliable for ASTA-colour 

prediction, as now the calibration dataset was larger 

and the calibration phenotypic range was wider and 

more distributed. In the literature, colour and its 

parameters have also been successfully identified or 

predicted with high correlations in carrot and tomato 

(r = 0.80 and 0.86 - 0.91) by Beghi et al. (2018), in 

Spanish paprika (r = 0.92 - 0.95) by Palacios-Morillo 

et al. (2016), and in rice (r = 0.86 - 0.94) by Saleh et 

al. (2008). 

The SHU-pungency trait calibration models 

using the original calibration strategy of calibration 

with n = 100, internal validation with n = 80, and 

external prediction with n = 79, resulted in high rcal 

values (0.934 - 0.958) and moderate rval values (0.740 

- 0.856). The most optimal model was achieved using 

LWNIR and first derivative pre-processed data with 
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Figure 1. Original absorbance spectra of dry pepper powder with spectral data from visible and near 

infrared regions (400 - 2500 nm). Photo insert is the rotating cup used for scanning of dry pepper powder. 

 

Table 2. Calibration, validation, and prediction results of American Spice Trade Association (ASTA)-

colour trait in pepper with partial least squares (PLS) regression models using spectroscopy data from 

categories of visible and short-wave radiation (Vis-SWNIR), short-wave (SWNIR), and long-wave 

(LWNIR) radiation. Pre-processing treatments used were first and second derivatives, multiplicative 

scatter correction (MSC), and standard normal variate (SNV).  

Trait 

Calibration 

(n = 100) 

Validation 

(n = 80) 

Prediction 

(n = 79) 

Spectral 

type/ 

Pre-

processing 

PLS 

factors 

(f) 

Effective 

wavelengths 

(per total) 

rcal RMSECV rval RMSEP rpre RMSEEP 

ASTA 

colour 

Vis-SWNIR (400 - 1098 nm) 

Original 7 166/350 0.912 8.46 0.915 9.47 0.898 15.66 

1st derivative 5 170/340 0.909 9.43 0.924 8.49 0.890 16.26 

2nd derivative 2 141/340 0.897 9.99 0.893 9.05 0.875 17.26 

MSC 5 194/350 0.888 9.23 0.866 10.27 0.806 21.08 

SNV 5 211/350 0.889 9.20 0.862 10.39 0.784 22.08 

SWNIR (800 - 1098 nm) 

Original 7 99/140 0.706 11.31 0.259 11.99 0.291 13.27 

1st derivative 6 87/140 0.666 11.24 0.223 11.76 0.315 12.02 

2nd derivative 4 109/140 0.758 11.18 0.155 11.51 0.288 11.70 

MSC 4 63/150 0.529 10.16 0.357 9.93 0.261 34.38 

SNV 8 70/150 0.802 10.84 0.326 17.41 0.102 35.33 

LWNIR (1100 - 2498 nm) 

Original 15 556 / 700 0.897 8.96 0.512 11.76 0.444 18.33 

1st derivative 14 485 / 690 0.928 7.81 0.690 9.94 0.647 13.90 

2nd derivative 9 507 / 690 0.954 6.50 0.536 9.64 0.656 13.79 

MSC 15 603 /700 0.922 8.09 0.627 10.26 0.255 388.90 

SNV 15 613 / 700 0.919 8.20 0.589 10.56 0.322 65.35 

n: sample size; rcal: correlation coefficient of calibration; RMSECV: root mean square error of cross-

validation; rval: correlation coefficient of validation; RMSEP: root mean square error of prediction; rpre: 

correlation coefficient of prediction; and RMSEEP: root mean square error of external prediction. 
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Figure 2. Root mean predicted residual sum of squares (PRESS)-statistic of refined calibrations for (A) 

American Spice Trade Association (ASTA)-colour, and (C) SHU-pungency traits together with their 

scatter plots of calibrations (marked as rounded symbol; n = 140) and predictions (marked as crossed 

symbol; n = 119) of (B) ASTA-colour and (D) SHU-pungency.  

 

a high RPD value of 2.62 (Table 3, bold). However, 

low agreement (r of 0.487) between the NIR 

predicted and actual value was observed when the 

model was applied to the external prediction. The 

evident difference in the phenotypic ranges across the 

calibration and prediction datasets, as well as the 

negatively skewed distribution of the SHU-pungency 

trait, could have contributed to this pitfall (Table 1). 

The least pungent sample had a SHU-pungency of 

400 in the external validation set, whereas 900 and 

3,800 were the lowest pungency values in the 

calibration and internal validation datasets, 

respectively. The predicted range of SHU-pungency 

values was outside the range of values used for 

calibrating the models. For instance, the frequency of 

samples with high pungency was far greater in the 

external validation relative to the calibration set, 

making possible distinct NIR spectral characters that 

were not well fitted to the PLS regression. 

The LWNIR first derivative SHU-pungency 

model was calibrated again similar to ASTA-colour 

by increasing the number of calibration samples to 

140, and combining the internal and external 

validation samples to 119. The re-calibrated model 

provided high correlations of calibration and 

prediction (rcal and rval values of 0.941 and 0.918, 

respectively), and an RPD value of 2.48. Although 

this model used a high number of extracted factors 

(PLS factors of 15), it was highly predictive and 

robust (Figure 2C and 2D). The germplasm was 

broadly diverse for pungency with 145,300 and 900 

as the maximum and minimum calibration pungency 

values, respectively, and 134,700 and 400 for 

validation, which could have resulted in requiring 

more PLS factors for the prediction model. In the 

future, this model can be further explored and 

assessed for robustness using an appropriate 

independent prediction set. In the literatures, 

predictive models for pungency related compounds 

have also been successfully developed in chili or 

pepper powder by Bonifazi et al. (2019) (r = 0.98), 

Jiang et al. (2018) (r = 0.80 - 0.83), Rahman et al. 

(2018) (r = 0.68 - 0.88), and Mo et al. (2013) (r = 0.97 

- 0.99). 
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Table 3. Calibration, validation, and prediction results of Scoville Heat Unit (SHU)-pungency trait in 

pepper with partial least squares (PLS) regression models using spectroscopy data from categories of 

visible and short-wave radiation (Vis-SWNIR), short-wave (SWNIR), and long-wave (LWNIR) 

radiation. Pre-processing treatments used were first and second derivatives, multiplicative scatter 

correction (MSC), and standard normal variate (SNV).  

Trait 

Calibration 

(n = 100) 

Validation 

(n = 80) 

Prediction 

(n = 79) 

Spectral 

type/ 

Pre-

processing 

PLS 

factors 

(f) 

Effective 

wavelengths 

(per total) 

rcal RMSECV rval RMSEP Rpre RMSEEP 

SHU 

pungency 

Vis-SWNIR (400 - 1098 nm) 

Original 8 204/350 0.626 15534 0.318 15211 0.132 12477 

1st derivative 5 211/340 0.605 15328 0.456 13856 0.120 11499 

2nd derivative 3 212/340 0.630 15575 0.282 14924 0.077 10609 

MSC 6 219/350 0.514 14042 0.080 12790 0.187 75623 

SNV 7 209/350 0.586 15113 0.121 15594 0.173 1e+5 

SWNIR (800 - 1098 nm) 

Original 9 118/150 0.759 15731 0.129 18413 0.112 20001 

1st derivative 6 91/140 0.643 15670 0.122 17360 0.077 16602 

2nd derivative 3 79/140 0.558 14734 0.292 13123 
-

0.029 
8503 

MSC 4 62/150 0.377 11109 0.362 11084 0.107 5e+5 

SNV 6 74/150 0.551 26568 0.041 18880 0.098 49812 

LWNIR (1100 - 2498 nm) 

Original 15 533/700 0.889 12937 0.663 17025 0.370 39783 

1st derivative 15 422/690 0.958 9098 0.856 11263 0.487 33797 

2nd derivative 8 420/690 0.947 9679 0.779 14487 0.515 24919 

MSC 15 550/700 0.934 10593 0.740 14610 0.187 6e+5 

SNV 15 531/700 0.934 10590 0.747 14424 0.183 5e+5 

n: sample size; rcal: correlation coefficient of calibration; RMSECV: root mean square error of cross-

validation; rval: correlation coefficient of validation; RMSEP: root mean square error of prediction; rpre: 

correlation coefficient of prediction; and RMSEEP: root mean square error of external prediction. 

 

Variable importance and effective wavelengths in re-

calibrated PLS models 

For NIR calibration model development, only 

the wavelengths with a VIP score greater than 0.8 

(significance threshold) reflected the number of 

effective wavelengths, as practiced in chemometrics 

application (Wold, 1994; Eriksson et al., 2001; 

Nordey et al., 2017). The most predictive models for 

ASTA-colour relied on most of the Vis-SWNIR 

spectroscopy data, whereas the LWNIR spectroscopy 

data was important for the SHU-pungency trait. 

Figure 3 shows diagrams of the VIP scores for both 

traits using the wavelengths of their respective 

spectroscopy data category. The wavelength region 

between 400 and 670 nm was primarily important for 

the ASTA-colour trait, in addition to several other 

wavelengths in the SWNIR region, totalling 172 

effective wavelengths (Table 2, Figure 3A). For the 

optimal ASTA-colour trait prediction model, nine 

PLS factors were extracted based on PRESS analysis 

to prevent possible overfitting. The red colour of 

pepper is imparted by carotenoids (i.e., pigments) 

with more than 50 identified structures, consistent 

with the signature wavebands observed in the VIS 

region for the ASTA-colour trait (Arimboor et al., 

2015; Kaur et al., 2020). These wavelength regions 

were also central for cultivar discrimination in Cen et 

al. (2007) and Shao et al. (2009) for orange, and in 

Cao et al. (2010) for grape. 

There was no particular wavelength region 

critical for SHU-pungency calibration as noted by the 

random spikes within the LWNIR wavelengths in the 
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VIP score plot (Figure 3B). Over 60% of the 

wavelengths were important for the optimal SHU-

pungency trait prediction model. The complexity of 

variables required 15 extracted factors for producing 

reliable PLS regression (Figure 2C). Several 

wavebands signalled common organic compounds 

were observed in SHU-pungency VIP score plots. 

The scores showed great peaks due to water with first 

overtone, and combination bands of the OH-bonds at 

1450 and 1940 nm, respectively, as well as 

combination bands of C-H bonds at 1206 nm and 

between 2000 and 2500 nm (Nicolaï et al., 2007; 

Wang et al., 2015; Currà et al., 2019). The 

wavelength peaks at 1722, 1746 - 1758, and 2148 - 

2200 nm could be associated with oil and protein, 

respectively (Manley, 2014). 

 

 
Figure 3. Variable importance in the projection (VIP) score for the refined PLS regressions of the (A) 

American Spice Trade Association (ASTA)-colour and (B) Scoville Heat Unit (SHU)-pungency traits. 

Wavelengths with VIP scores greater than 0.8 were effective for model development as indicated by the 

horizontal line. Wavelengths of visible and short-wave radiation (VIS-SWNIR) for ASTA-colour, and 

long-wave radiation (LWNIR) for SHU-pungency were important for the most optimal models. 

 

Conclusion 

 

The present work investigated the ability of 

NIR spectroscopy with multivariate statistics to 

predict the high-throughput phenotype of the 

biochemical quality of dry pepper of India. We 

successfully predicted ASTA-colour and SHU-

pungency traits using robust and reliable trait-specific 

PLS prediction models. The visible and short-wave 

radiation spectroscopy with first derivative pre-

processing treatment provided the most predictive 

model for ASTA-colour. The long-wave radiation 

spectroscopy with first derivative pre-processing 

treatment provided the most predictive model for 

SHU-pungency. Variable importance in projection 

scores was useful for calibration of both traits as they 

significantly reduced the number of effective 

wavelengths. Quality distribution, the range of 

diversity within the germplasm, and trait phenotypic 

variation were influential factors for model 

performance. For future routine screening 

implementation in a seed company, ASTA-colour and 
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SHU-pungency PLS models should continue to be 

calibrated with larger calibrations (n > 1000) when 

tested across multiple locations, seasons, years, and 

other factors relevant to the breeding program. 
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