Effect of partial replacement of sucrose with the artificial sweetener
sucralose on the physico-chemical, sensory, microbial characteristics,
and final cost saving of orange nectar

1*Al-Dabbas, Maher M. and 2Al-Qudsi, Jamil M.
1Department of Nutrition and Food Technology, Faculty of Agriculture, University of
Jordan, Amman 11942, Jordan
2Jamil Alqudsi establishment for general trade, Amman, Jordan

Abstract: This study is aimed to produce economical and high quality orange nectar by partial replacement of sucrose with an equivalent sweetness from the safe artificial sweetener sucralose. Using different ratios from sucrose and sucralose at concentrations equivalent to sucrose sweetness in the final orange nectar affect significantly (p<0.05) the total soluble solids (Brix) and viscosity (cp) but does not affect other physico-chemical properties or microbial counts in all treatments compared to the control nectar (10%sucrose). The control orange nectar Brix was 14.3°Brix, while in T1 (7.5% sucrose: 0.005% sucralose), T2 (5.0% sucrose: 0.01% sucralose) and T3 (2.5% sucrose: 0.015% sucralose)nectars the Brix was decreased to 11.3, 8.5 and 5.5° Brix, respectively. Viscosities of nectars were reduced from 6.6 cp in control to 6.0, 5.3 and 3.2 in T1, T2 and T3, respectively. The average ratings given by panelists for the sweetness, odor and taste of T1 nectar were more accepted (higher ratings) than T2 and T3. No differences were found in T2 and T3 taste, but the odor and sweetness of T2 nectar was given higher ratings than T3. The use of 86 kg (75%) of sucrose from the original amount (115 kg sucrose) usually used in production of one ton of orange nectar and 0.05 kg from sucralose (T1) was found to be the best combination in reduction of orange nectars production cost without drastic changes in sensory and physico-chemical characteristics, and consistent with Jordanian standards for orange nectars.

Keywords: Orange nectar, sucralose, splenda, physico-chemical tests, sweetener

Introduction

Sucrose from sugar cane or sugar beets has been a part of the human diet for centuries and its sweet taste is a natural preference by humans (Grotz, and Munro, 2007). Sucrose has many important properties other than sweetener in food industry such as preservatives, enhancing and bringing out the characteristics of other flavoring ingredients, provides bulk and colloidal osmotic pressure in food, and influences the physical properties of food. However, sucrose has posed significant technological problems in certain applications like the hydrolysis in acidic systems which may resulted in changing the sweetness and flavor characteristics of the product, and it must be dissolved in water before use in many applications (Hallfrisch, 1983).

In many studies different alternative sugars have been used in food industries due to the growing concern about people’s intake of sugar and nutritionist recommendation to reduce the intake of sucrose (Ludwig et al., 2001; Parpinello et al., 2001; Schulze et al., 2004; Sun and Empie, 2007; Rodbotten et al., 2009). Glucose syrups and high fructose corn syrups (HFCS) proved themselves as alternative to sucrose in liquid applications because they are stable in acidic foods and beverages (Saenz et al., 1998; Fulgoni, 2008), but due to their high initial prices and shipping costs (syrups provided in barrels) makes their uses infeasible. Recently, most of food industries are using sugar blends from sucrose, glucose, fructose, sorbitol and artificial sweeteners to reduce both sugar and caloric content (Nabros, 2002; Meyer, 2002; Cardoso and Bolini, 2007; Rodbotten et al., 2009). Although, artificial sweeteners were used wholly or partly in different food industries, but due to safety issues, objectionable aftertaste and their need to additional ingredients to match one or more of other attributes of sucrose, make complete replacement of sucrose with alternative sweeteners in juice industry associated with some of the technological and legislative problems. Thus, combining artificial sweeteners (partial) with sucrose may prove the best combination in keeping quality, cost reduction and low caloric juice production.

Sucralose is a non-nutritive sweetener produced by substitution of three atoms of chlorine for three hydroxyl groups in sucrose (Jenner, 1989). Studies show that sucralose is safe, poorly absorbed, intensely sweet (600 times sweeter than sucrose), does not have the bitter aftertaste, highly stable at elevated temperatures and has excellent stability in acidic
products (Jenner, 1989; Horne et al., 2002; kuhn et al., 2004; Grotz, and Munro, 2007) which make it an ideal sweetener for both beverage manufacturers and consumers.

In Jordan, orange juices and nectars are the most preferred and consumed fruit juices. The ideal concentration of soluble solids considered by the consumers is 14% and for legislation authority (Jordanian standards and metrology) is not less than 11° Brix for juices or nectars. The aim of this study was to produce high quality orange nectar using different combinations from sucrose and sucralose in order to reduce the final production cost without affecting the physico-chemical characteristics and meet the Jordanian standards for the produce. The produce is expected to be of high economical and nutritional values.

Materials and Methods

Orange nectar processing

Orange nectar is prepared by dissolving sucrose (115 kg) in clean drinking water (850 liters) with citric acid (2 kg), pectin (350 g), vitamin c (100 g), β-carotene (10-20 g) and orange flavors (syrup). The orange juice concentrated base (45 kg of 60%) was hydrated and mixed with sugar syrup following the manufacturer’s recommendations (Figure 1) for production of one ton of orange nectar (25% natural juice). The final total solids were measured at this step to assure brix value (14° Brix). Finally, the mixture is pasteurized at 90°C for 3 min, homogenized and filled aseptically hot in 250 ml glass bottles.

Methods of analysis

Total soluble solids content (Brix) was measured with Abbe refractometer at 20°C. Acidity was determined by titration with 0.1 N NaOH and expressed as percent of citric acid using phenolphthalein as the indicator. The pH was measured with a Fisher pH meter (Model 210, Fisher). The viscosity (cps) was determined in a Brookfield viscometer (20°C, spindle No 1 at 50 rpm). For the microbial counts, samples were serially diluted, plated in total count agar (Plate count Agar, Merck, Germany) for total counts, and in acidified potato dextrose agar (Potato Dextrose Agar, Merck, Germany) for mold and yeast counts. Plates were incubated at 30°C for 48 h for total count and 5 days for molds and yeast. All the analytical measurements were done in triplicate.

Sensory analysis

The relative sweetness (sucrose like sweetness), taste (flavour related to fruity acid) and odor (fresh and fruity orange odor) of different sugar formulations in orange nectars were determined by rating the preferred sample from 1-10 in comparison with the normally produced orange nectar (control). Water was used for cleansing palates. The panel was composed of ten untrained persons working in the factory and familiar with the company produced juices and nectars. The samples were presented in a transparent glass at room temperature (20°C).

Statistical analysis

Data in triplicate were analyzed using statistical analysis system, SAS program (SAS Institute Inc., Cary, NC, USA). Significant differences among means of treatments were determined using LSD test. Differences at $P<0.05$ were considered to be significant.

Results and Discussion

Effect of different treatments on the physico-chemical and microbial characteristics of orange nectars

The effects of using different ratios of sucrose and sucralose on the physical and chemical properties of
the produced orange nectars are shown in Table 1. All measurements carried out directly after processing. There were no significant differences in pH and microbial counts between treated samples and control. In spite of significant differences in the titrable acidity measurements it can be considered negligible since all treatments (except T1) measurements are not different from control, and T1 is not significantly different from other treatments. Significant differences were detected in Brix degree and viscosity of samples according to the treatment.

The control juice Brix was 14.3°Brix (14.3%), while in T1, T2, and T3 was decreased to 11.3, 8.5 and 5.5% respectively. The replacement of large proportion of sucrose with low amount of sucralose results in the reduction of nectars Brix in all treatments and this reduction is proportional to the amount of sucrose replaced by sucralose. Jordanian standards specify 11 Brix as the minimum degree for natural nectars.

The viscosities of different nectar treatments were significantly different from control. The decrease in the viscosity was increased by increasing the replaced amount of sucrose with sucralose across all treatments. The replacement of large proportion of sucrose with low amount of sucralose produced a decrease in the viscosity of nectars and this reduction in viscosity is proportional to the decreases in the produced nectars water activities. Benitez et al. (2008) showed that specific viscosity of a colloidal dispersion of solids in syrups is increased by increasing particle-sugar interactions and by lowering the water activity of syrups.

Effects of different treatments on microbial flora of orange nectars

Citrus juices are the most susceptible to yeast spoilage, owing to their low pH and high contents of sugars and vitamins (Kimball, 1999; Rivas et al., 2006). The microbial spoilage of juice products may lead to off-flavors, odors, turbidity and gas production (Jay and Anderson, 2001). The effect of sucrose partial substitution with sucralose on the total plate counts and yeast and mold flora in the produced orange nectars after pasteurization is shown in Table 1. The population levels of both aerobic bacteria, and yeast and mold were below the detection limit in all treatments (<1 cfu/ml) directly after pasteurization and hot filling of nectars. There are many studies showing that pasteurization alone is not efficient in inactivation of microbial flora of juices under different storage conditions (Ayhan et al., 2001; Min et al., 2003; Mehmood et al., 2008). This study showed that hot filling of the pasteurized nectars and acidic medium are efficient in the elimination of tested microbe’s growth directly after processing. However, the growth of juice flora may occur during storage due to the decrease in juices pH (Mehmood et al., 2008).

Effects of different treatments on sensory analysis

Figure 2 shows the average ratings given by the judges for different sensory characteristics of orange nectars.

Control nectar made from sucrose was found to be the most acceptable by securing highest score during sensory evaluation. The odor, sweetness and taste of T1 sample was more accepted (higher ratings) than T2 and T3. No differences were found in T2 and T3 taste, but odor of T3 sample was given higher ratings than T2. The degree of sweetness in all treated samples was decreased by increasing the partial substitution of sucrose, this may due to the slightly bitter taste detected due to the replacing of sucrose with sucralose in different treatments. Treatments with lower sucrose contents were perceived as most bitter (T1) and the least bitter samples were high in sucrose content. This finding is in agreement with studies reported by Rodbotten et al. (2009) and Kerutzmann et al. (2008). They have shown that high sucrose content may cover the sensory perception of bitterness. Orange nectars sensory scores in this study suggest that nectars with

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Control</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>3.36 ± 0.05^a</td>
<td>3.36 ± 0.04^a</td>
<td>3.38 ± 0.04^a</td>
<td>3.37 ± 0.04^a</td>
</tr>
<tr>
<td>Titrable acidity (%)</td>
<td>0.42 ± 0.03^a</td>
<td>0.35 ± 0.02^a</td>
<td>0.38 ± 0.02^a</td>
<td>0.39 ± 0.02^a</td>
</tr>
<tr>
<td>Brix</td>
<td>14.3 ± 0.2^a</td>
<td>11.3 ± 0.1^b</td>
<td>8.5 ± 0.2^c</td>
<td>5.5 ± 0.2^d</td>
</tr>
<tr>
<td>Viscosity (cp)</td>
<td>6.6 ± 0.1^a</td>
<td>6.0 ± 0.2^b</td>
<td>5.3 ± 0.2^c</td>
<td>3.2 ± 0.2^d</td>
</tr>
<tr>
<td>Molds and yeast (cfu/ml)</td>
<td>< 1 cfu/ml</td>
<td>< 1 cfu/ml</td>
<td>< 1 cfu/ml</td>
<td>< 1 cfu/ml</td>
</tr>
<tr>
<td>Total Plate Counts (cfu/ml)</td>
<td>< 1 cfu/ml</td>
<td>< 1 cfu/ml</td>
<td>< 1 cfu/ml</td>
<td>< 1 cfu/ml</td>
</tr>
</tbody>
</table>

1 Values are the means of triplicate measurements. Values in the same row followed by different letters are significantly different (P < 0.05).
the higher sucrose content can enhance sweetness, taste and odor and these attributes were getting lower rating by increasing the partial substitution of sucrose with sucralose in the studied orange nectars.

Relative cost of different sugar treatments in orange nectar production

Table 2 gives estimates of the relative cost of sweetness provided from using sucrose alone and from different ratios from sucrose and sucralose for production of one ton of orange nectars. The results suggest that the partial replacement of 25% of sucrose with sucralose to give an equivalent sweetness for orange nectar can reduces the cost of final nectar by around 11250.0 US $/ month if only 2 tons of sucrose are used daily and the processed orange nectar meets the Jordanian specifications and comparable to the control nectar produced from sucrose only in all quality indicators.

Conclusions

This research has resulted in the establishment of the best ratios from sucrose and artificial sweetener sucralose for commercial production of safe, high quality and low cost orange nectars that meet Jordanian specifications and market demand. There was no real difference in some of the physico-chemical characteristics (pH, titrable acidity) of partially replaced sucrose in T1 nectar and untreated orange nectars. The sensory and microbial qualities remained almost unchanged and acceptable for control and T1 nectars.

Acknowledgements

This study was undertaken as part of FFF research and technological development project. The researcher would like to acknowledge Faculty for Factory staff administration and Allotus Company, especially, Eng. Abdullah Sweis for their kind cooperation to accomplish this project.

References

Fulgoni, V. 2008. High-fructose corn syrup: everything you wanted to know, but were afraid to ask. American Journal of Clinical Nutrition 88: 1716S-17215S.

International Food Research Journal 19(2): 679-683
Effect of partial replacement of sucrose with sucralose on orange nectar quality and cost

24: 10260-10265.

Min, S., Jin, Z. T., Yeom, H., Min, S. K. and Zhang, Q. H. 2003. Commercial-scale pulsed electric field processing of orange juice. Food Chemistry and Toxicology 68: 1265-1271.

Rivas, A., Rodrigo, D., Martinez, A., Barbosa-novas, G. V. and Rodrigo, M. 2006. Effect of PEF and heat pasteurization on the physical-chemical characteristics of blended orange and carrot juice. LWT 39: 1163-1170.

