Accumulation and distribution of selenium in different parts and macromolecule of Se-enriched Tartary Buckwheat (*Fagopyrum tataricum* Gaertn.) during germination

Hongmei Zhu

College of Food Science and Technology, Shanxi Normal University, Linfen, 041004, China

Abstract

The accumulation of selenium (Se) and distribution in the sprouts of tartary buckwheat cultivated in Na$_2$SeO$_3$ solutions with different concentrations were investigated in this study. Total Se content, organic Se content and the proportion of organic Se were determined. The results indicated that the total Se content increased gradually while the proportion of organic selenium decreased gradually with the increasing of ambient Na$_2$SeO$_3$ concentrations in the range of 10-20 μg/mL. After three days’ germination, tartary buckwheat cultivated in 20 μg/mL Na$_2$SeO$_3$ solution presented the highest selenium accumulation; Se contents in different parts decreased in this order: radicle > husk > hypocotyl > cotyledon. Se contents in total protein were higher than in polysaccharides, nucleic acids and other components. Furthermore, Se contents in protein fractions decreased in the order albumin, glutelin, globulin and prolamin. Selenium in proteins was primarily present as albumin-bound Se and glutelin-bound Se.

Introduction

Tartary buckwheat (*Fagopyrum tataricum* Gaertn.) is a seed-producing agricultural crop in the family Polygonaceae. Although not a cereal, it and other buckwheat species is usually grouped with cereals due to its method of cultivation and similar nutrient profile. Buckwheat is primarily grown in mountainous areas and plateaus, where soil is typically barren with less water, rare nutrition and low temperature. However, buckwheat seeds are nutrient-rich, containing proteins with high biological value and a balanced amino acid composition, relatively high crude fiber content (Farrell, 1978), and vitamins B_1, B_2, and B_6 (Bonafaccia et al., 2003). In addition, Tartary buckwheat contains more rutin than common buckwheat (Kitabayashill et al., 1995; Fabjan et al., 2003). Therefore, tartary buckwheat is an important functional food that is useful in the prevention of edema and hemorrhagic diseases, and in stabilizing high blood pressure (Havsteen, 1983).

Selenium (Se) is an essential micronutrient for human beings and animals (Navarro-Alarcon and Cabrera-Vique, 2008). As the component of selenocysteine, the 21st amino acid, Se plays an essential role in the formation of some biological enzymes, such as glutathione peroxidases, thioredoxin reductase, iodothyronine deiodinases, and selenophosphate synthetase (Letavayová et al., 2006). Glutathione peroxidases and thioredoxin reductase have been reported to present antioxidant activity and anticarcinogenic effects and other physiological functions (Arteel and Sies, 2001). Selenium deficiency is associated with poor health and general impairment of the immune system. Meanwhile, the bioavailability, reactivity and concentrations for toxicity of selenium are dependent on its chemical forms and concentrations (Besser et al., 1993). In general, the inorganic forms of selenium are more toxic than the organic forms. On the other hand, organic forms of selenium are more bioavailable to humans than inorganic selenium species (Thomson, 2004). Thus, accumulation of Se in crops is an important breeding goal, particularly with reference to organic Se.

Some research has been conducted on increasing Se contents in tartary buckwheat through foliar sprays (Smrkolj et al., 2006). However, this method was associated high costs and potential environmental problems. Plant seeds have been reported to accumulate Se and transform inorganic Se to organic Se during germination (Liu and Gu, 2009). Simultaneously, the nutritional value of many types of grain seeds improves during the course of germination (Zhou et al., 2011).

Research on Se distribution and accumulation has been conducted in crops typically considered as good sources of selenium, such as bean, rice and mushrooms (Zhao et al., 2004; Smrkolj et al., 2007). However, there is little information available regarding these aspects in Se-enriched tartary buckwheat sprouts. It is of interest to determine whether tartary buckwheat...
can be successfully accumulating inorganic selenium and be used as a dietary source of Se. Accordingly, the objectives of this study were to investigate the accumulation and distribution of Se in different parts of buckwheat sprouts and to determine the effect of external Se concentrations on accumulating selenium in tartary buckwheat sprouts. Additionally, the distribution of Se in nucleic acids, polysaccharides and proteins were determined as well as in different protein fractions.

Materials and Methods

Materials
Tartary buckwheat was cultivated in Datong, Shanxi, China; seeds were obtained from the Shanxi Academy of Agricultural Science (SAAS). Plump and unbroken seeds were chosen as test materials.

Preparation of Se-enriched tartary buckwheat
Four sets of tartary buckwheat seeds were weighed and surface-sterilized with 1% NaClO solution for 5 min and washed three times with 30 mL deionized water. The four sets of seeds were soaked in Na$_2$SeO$_3$ solutions of varying concentrations (10 μg/mL, 20 μg/mL, 30 μg/mL) at 30°C for 12 h, soaking in deionized water as the control. The seeds were then transferred to Petri dishes, cultivated with 10 mL of Na$_2$SeO$_3$ solutions which concentration was in the corresponding soaking concentration. The seeds were germinated at room temperature for 72 h. Additional Na$_2$SeO$_3$ solution was added to each dish daily to maintain seed wetness. The control seeds were germinated in a similar manner, except that distilled water was used instead. Germinating seeds were collected every 24 h; the sprouts were washed with distilled water and stored at -20°C for further use.

Distribution of selenium in different parts of tartary buckwheat sprouts
As shown in Figure 1, different parts of tartary buckwheat sprouts (radicle, husk, hypocotyl, and cotyledons) were cut with a scalpel and dried in an oven at 60°C. They were then ground to a powder.

Extraction of total protein from Se-enriched tartary buckwheat
Nine grams of Se-enriched tartary buckwheat powder were dissolved into 100.0 mL of 50 mmol/L Tris-HCl buffer (pH 8.5). The mixture was stirred continuously for 2 h, and then centrifuged at 3000 g for 20 min. The residue was re-extracted twice and centrifuged as indicated. To the combined supernatants, (NH$_4$)$_2$SO$_4$ was added to achieve 95% saturation. The mixture was stored overnight in a refrigerator at 4°C. The resulting precipitation was collected by centrifugation at 3000 g for 20 min. Selenium contents in this total protein fraction were measured after digestion to represent protein-bound Se.

Extraction of nucleic acid from Se-enriched tartary buckwheat
Powdered samples (15 g) were steeped in 150 mL of 2 mol/L NaCl solution. The mixture was extracted in a boiling water bath for 30 min and the supernatant was obtained by centrifugation at 3000 g for 20 min (Mäkelä et al., 1995). The residue was re-extracted twice and centrifuged as before. The combined supernatants were mixed (5:1, v/v) with chloroform: n-butanol (4:1, v/v) to remove proteins. After adjusting the pH to 2.5 using acetic acid, the mixture solution was placed in ice-cold water overnight. Finally, precipitated nucleic acids were obtained by centrifugation at 3000 g for 20 min. Selenium contents in the samples were measured after digestion to represent the nucleic-acid-bound Se.

Extraction of polysaccharides from Se-enriched tartary buckwheat
The residue remaining after extracting nucleic acids was added to 100 mL of deionized water and extracted in a boiling water bath for 2 h. The supernatant was obtained by centrifugation at 3000 g for 20 min and the residue was re-extracted twice. The supernatants were combined and mixed (5:1 v/v) with chloroform: n-butanol (4:1, v/v) to remove proteins according to the method of Qin (Qin et al., 2002). Four times volume of 95% ethanol was added to the fraction. The mixture was stored in a refrigerator overnight. Precipitated polysaccharide were obtained through centrifugation at 3000 g for 20 min. Selenium contents were measured after digestion to represent the polysaccharide-bound Se.

Fractionation of different protein components in Se-enriched tartary buckwheat sprouts
Protein components were extracted according to the successive extraction method described by Guo.
(Guo and Yao, 2006).

Extraction of albumin: 4.5 g of the sample powder was mixed with 30 mL of distilled water and was stirred for 30 min at room temperature to extract water-soluble proteins. The supernatant was obtained by centrifugation at 5000 g for 10 min.

Extraction of globulin: After extraction of albumin, the residue was steeped in 30 mL of 2% NaCl solution and the mixture was continuously stirred at room temperature for 30 min. The supernatant containing globulin fraction was obtained by centrifugation at 5000 g for 10 min.

Extraction of prolamin: After extraction of globulin, the residue was extracted with 30 mL of 75% ethanol for 30 min, with continuous stirring at room temperature. The supernatant containing prolamin fraction was obtained by centrifugation at 5000 g for 10 min.

Extraction of glutelin: After prolamin extraction, the residue was steeped in 30 mL of 0.02 mol/L NaOH solution and the mixture was continuously stirred at room temperature for 30 min. The supernatant containing glutelin fraction was obtained by centrifugation at 5000 g for 10 min. Protein contents in each fraction were determined by the National Standard Method of China (GB-5009.5-2010) with a model VAP10 Kjeldahl nitrogen analyzer (Gerhardt, City, Germany).

Determination of total Se and organic Se contents

The contents of total Se were determined using differential pulse polarography as reported by İnam and Somer, 1998. The sample was digested in 5 mL of mixture of HNO₃ and perchloric acid (4:1, v:v) at 130°C until white smoke appeared. After cooling to room temperature, 5 mL of hydrochloric acid was added and the mixture was held at 115°C for 30 min to reduce Se (VI) to Se (IV). The clear solution obtained was diluted to a volume of 10 mL with distilled water. Total selenium in the samples was determined using polarography.

Organic selenium was detected according to the method described by Zhao and Zhang (Zhao et al., 2004; Zhang et al., 2009). Se-enriched tartary buckwheat powder was dialyzed (8000–12000 Da, 48 h) with double-distilled water. During dialysis, the double-distilled water was changed once every 12 h until no selenium was detected in the dialysis water. Thus, Se compounds left in the sample were considered to be organic selenium.

Organic selenium proportion = (Organic selenium / Total selenium) × 100%.

Statistical analysis

Data was analyzed using SAS software (Statistical Analysis Systems, USA). Differences were evaluated using Duncan’s multiple range test. The significance analysis was established at P ≤ 0.05.

Results and Discussion

Accumulation of Se during the germination of tartary buckwheat

As shown in Table 1, the total selenium content increased as germination time increased. Similar results have been reported previously (Zhang et al., 2006). In addition, the total Se content increased with increasing external selenite concentration in the range of 10-20 μg/mL. However, when 30 μg/mL of external selenite was supplied, the total Se content decreased. This is because an excess of Se inhibited the growth of sprouts during the entire germination process and reduced total selenium content (Liu and Gu, 2009). In other words, if the external Se content was less than 20 μg/mL, there was no significantly inhibitory effect on total Se content in the plant and germination proceeded normally. These results were consistent with those observed previously (Zhao et al., 2004; Liu and Gu, 2009). Some studies have indicated that the inhibitory effect of selenium was due to the destruction of protein structure and function (Brown and Shrift, 1982). In addition, Se-tolerant accumulator plants differ in at least two respects from sensitive species (Brown and Shrift, 1982). For example, the thresholds for Se toxicity are 20 μg/mL and 15 μg/mL in tartary buckwheat and brown rice, respectively, both of which are tolerant of Se.

Organic selenium content increased as the germination time increased. In the presence of 20 μg/mL of Na₂SeO₃, the organic selenium content in 3 d germinating buckwheat sprouts was 8.17 times that in 1 d sprouts. This result was consistent with previous studies on this topic (Zhang et al., 2009). It is evident that buckwheat has the ability to convert inorganic Se to organic Se. Organic Se contents responded to variable concentrations of Na₂SeO₃ in a manner similar to that for total selenium. When 30 μg/mL of selenite was supplied in the medium during germination, the organic Se content significantly decreased with increasing selenite concentration in one-day-old sprouts. This indicated that the excess Se could inhibit the germination of buckwheat.

The proportion of organic selenium progressively decreased as the external selenite concentration increased from 10 μg/mL to 30 μg/mL. In other words, external Se may reduce the rate of synthesis of organic...
selenium, similar to report in a previous study (Liu and Gu, 2009). In two-day-old buckwheat sprouts treated with 30 μg/mL of Na$_2$SeO$_3$, the proportions of organic Se were 12.48% and 19.86% lower than in the medium. Therefore, it is essential to investigate the behavior of Se in relation to functional macromolecules. The proteins, nucleic acids and polysaccharides and other biological macromolecules were extracted and separated from tartary buckwheat sprouts. Selenium contents were determined in each of these fractions (Table 2). All groups of macromolecules were observed to be bound to Se to a certain degree. Protein-bound selenium comprised 32.18% of total selenium, while nucleic-acid-bound selenium and polysaccharide-bound selenium accounted for 17.38% and 17.02% respectively. An additional 18.09% was bound to other biomolecules fraction. In addition, protein-bound Se, nucleic-acid-bound Se, polysaccharide-bound Se and other organic Se accounted for 38.70%, 20.52%, 20.11% and 21.37% of organic Se. It was evident that most of the plant Se was present in an organic form, while nucleic-acid-bound selenium and polysaccharide-bound selenium accounted for 17.38% and 17.02% respectively. An additional 18.09% was bound to other biomolecules fraction. In addition, protein-bound Se, nucleic-acid-bound Se, polysaccharide-bound Se and other organic Se accounted for 38.70%, 20.52%, 20.11% and 21.37% of organic Se. It was evident that most of the plant Se was present in an organic form, accounting for 85.61% of total Se; the organic Se decreased in the following order: protein-bound Se > other organic Se > nucleic acid-bound Se > polysaccharide-bound Se. These results were similar to previous study (Zhao et al., 2004; Zhang et al., 2009). Another study indicated that Se incorporated into proteins exists primarily as Se-Met, taking the place of the equivalent sulfur-containing amino acids (Vogrinic et al., 2009). This is considered to be the underlying cause of selenium toxicity (Brown and Shrift, 1982).

Protein components from Se-enriched tartary buckwheat sprouts

In the control treatment, the most abundant protein fraction in tartary buckwheat was observed to be albumin, followed by glutelin and then prolamin, with relatively small amounts of globulin.
Changes in the contents of protein-bound Se in tartary buckwheat sprouts with germination at 20°C for 3 d with 20 μg/mL Na₂SeO₃ in the medium. The values shown are the means ± SD. Values followed by different letters in the same column are significantly different (P < 0.05).

Table 3. Effects of selenium concentration in protein fractions

<table>
<thead>
<tr>
<th>Protein concentration (μg/mL)</th>
<th>Na₂SeO₃ Concentration (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>albumin</td>
<td>16.24 ± 0.46c</td>
</tr>
<tr>
<td>globulin</td>
<td>8.31 ± 0.19c</td>
</tr>
<tr>
<td>prolamin</td>
<td>11.79 ± 0.26c</td>
</tr>
<tr>
<td>glutelin</td>
<td>16.14 ± 0.45c</td>
</tr>
</tbody>
</table>

Se-enriched buckwheat sprouts were produced by germination at 20°C for 3 d with 0-30 μg/mL Na₂SeO₃ in the medium. The values shown are the means ± SD. Values followed by different letters in the same row are significantly different (P < 0.05).

in the medium, selenium contents in each protein fraction were not significantly affected by treatment. However, compared with control buckwheat sprouts, the levels of protein-bound selenium were significantly higher in Se-treated sprouts, with the highest absolute values for each fraction in the 20 μg/mL selenium treatment. Some enzymes play an important part during biosynthesis of Se-bound protein, such as cysteine synthase, which transforms selenide into selenocysteine in place of the equivalent sulphur amino acids (Ng and Anderson, 1979). The incorporation of Se into protein is considered to be the underlying cause of selenium toxicity and the selenium-tolerant accounts were different in accumulator plants (Brown and Shrift, 1982). Zhao et al. (2004) also reported that a low concentration of Se (<100 μg/g) in substrate facilitated the synthesis of total protein, but a high concentration of Se (>150 μg/g) played a reverse role. Therefore, treatment with 20 μg/mL of Na₂SeO₃ can be considered to be appropriate for cultivating Se-enriched buckwheat sprouts at room temperature.

Conclusion

In this study, the accumulation and distribution of Se in tartary buckwheat were investigated. Tartary buckwheat exhibited the ability to convert inorganic Se to organic Se and accumulate organic Se. Total Se and organic Se contents in the sprouts increased with germination time, however, external selenite concentrations above 30 μg/mL showed significantly inhibitory effect on the enrichment of Se in the sprouts. After germination for 3 d, the Se content in various parts of buckwheat sprouts decreased in this order: radicle > husk > hypocotyl > cotyledon, while protein-bound Se, itself dominated by albumin-bound and glutelin-bound Se, was the most dominant form among macromolecule-bound Se. Further research concerning structures and functions of Se-bound...
protein are needed to be carried out in the future.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 31300157), and by National Science Foundation of Shanxi Normal University (No.872018).

References

